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Linear Algebra is one of the most important basic areas in Mathematics, having at least as

great an impact as Calculus, and indeed it provides a significant part of the machinery required

to generalise Calculus to vector-valued functions of many variables. Unlike many algebraic

systems studied in Mathematics or applied within or outwith it, many of the problems studied

in Linear Algebra are amenable to systematic and even algorithmic solutions, and this makes

them implementable on computers – this explains why so much calculational use of computers

involves this kind of algebra and why it is so widely used. Many geometric topics are studied

making use of concepts from Linear Algebra, and the idea of a linear transformation is an

algebraic version of geometric transformation. Finally, much of modern abstract algebra builds

on Linear Algebra and often provides concrete examples of general ideas.

These notes were originally written for a course at the University of Glasgow in the years

2006–7. They cover basic ideas and techniques of Linear Algebra that are applicable in many

subjects including the physical and chemical sciences, statistics as well as other parts of math-

ematics. Two central topics are: the basic theory of vector spaces and the concept of a linear

transformation, with emphasis on the use of matrices to represent linear maps. Using these,

a geometric notion of dimension can be made mathematically rigorous leading its widespread

appearance in physics, geometry, and many parts of mathematics.

The notes end by discussing eigenvalues and eigenvectors which play a rôle in the theory

of diagonalisation of square matrices, as well as many applications of linear algebra such as in

geometry, differential equations and physics.

There are some assumptions that the reader will already have met vectors in 2 and 3-

dimensional contexts, and has familiarity with their algebraic and geometric aspects. Basic

algebraic theory of matrices is also assumed, as well as the solution of systems of linear equations

using Gaussian elimination and row reduction of matrices. Thus the notes are suitable for a

secondary course on the subject, building on existing foundations.

There are very many books on Linear Algebra. The Bibliography lists some at a similar

level to these notes. University libraries contain many other books that may be useful and there

are some helpful Internet sites discussing aspects of the subject.
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CHAPTER 1

Vector spaces and subspaces

1.1. Fields of scalars

Before discussing vectors, first we explain what is meant by scalars. These are ‘numbers’ of

various types together with algebraic operations for combining them. The main examples we

will consider are the rational numbers Q, the real numbers R and the complex numbers C. But
mathematicians routinely work with other fields such as the finite fields (also known as Galois

fields) Fpn which are important in coding theory, cryptography and other modern applications.

Definition 1.1. A field of scalars (or just a field) consists of a set F whose elements are

called scalars, together with two algebraic operations, addition + and multiplication ×, for

combining every pair of scalars x, y ∈ F to give new scalars x + y ∈ F and x × y ∈ F . These

operations are required to satisfy the following rules which are sometimes known as the field

axioms.

Associativity: For x, y, z ∈ F ,

(x+ y) + z = x+ (y + z),

(x× y)× z = x× (y × z).

Zero and unity: There are unique and distinct elements 0, 1 ∈ F such that for x ∈ F ,

x+ 0 = x = 0 + x,

x× 1 = x = 1× x.

Distributivity: For x, y, z ∈ F ,

(x+ y)× z = x× z + y × z,

z × (x+ y) = z × x+ z × y.

Commutativity: For x, y ∈ F ,

x+ y = y + x,

x× y = y × x.

Additive and multiplicative inverses: For x ∈ F there is a unique element −x ∈ F (the

additive inverse of x) for which

x+ (−x) = 0 = (−x) + x.

For each non-zero y ∈ F there is a unique element y−1 ∈ F (the multiplicative inverse of y) for

which

y × (y−1) = 1 = (y−1)× y.

Remark 1.2.

• Usually we just write xy instead of x× y, and then we always have xy = yx.
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2 1. VECTOR SPACES AND SUBSPACES

• Because of commutativity, some of the above rules are redundant in the sense that

they are consequences of others.

• When working with vectors we will always have a specific field of scalars in mind and will

make use of all of these rules. It is possible to remove commutativity or multiplicative

inverses and still obtain mathematically interesting structures but in this course we

definitely always assume the full strength of these rules.

• The most important examples are R and C and it is worthwhile noting that the above

rules are obeyed by these as well as Q. However, other examples of number systems

such as N and Z do not obey all of these rules.

Proposition 1.3. Let F be a field of scalars. For any x ∈ F ,

(a) 0x = 0, (b) − x = (−1)x.

Proof. Consider the following calculations which use many of the rules in Definition 1.1.

For x ∈ F ,

0x = (0 + 0)x = 0x+ 0x,

hence

0 = −(0x) + 0x = −(0x) + (0x+ 0x) = (−(0x) + 0x) + 0x = 0 + 0x = 0x.

This means that 0x = 0 as required for (a).

Using (a) we also have

x+ (−1)x = 1x+ (−1)x = (1 + (−1))x = 0x = 0,

thus establishing (b). ¤

Example 1.4. Let F be a field. Let a, b ∈ F and assume that a 6= 0. Show that the equation

ax = b

has a unique solution for x ∈ F .

Challenge: Now suppose that aij , b1, b2 ∈ F for i, j = 1, 2. With the aid of the ‘usual’ method

of solving a pair of simultaneous linear equations show that the system{
a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

}

has a unique solution for x1, x2 ∈ F if a11a22 − a12a21 6= 0. What can be said about solutions

when a11a22 − a12a21 = 0?

Solution. As a 6= 0 there is an inverse a−1, hence the equation implies that

x = 1x = (a−1a)x = a−1(ax) = a−1b,

so if x is a solution then it must equal a−1b. But it is also clear that

a(a−1b) = (aa−1)b = 1b = b,

so this scalar does satisfy the equation. Notice that if a = 0, then the equation

0x = b

can only have a solution if b = 0 and in that case any x ∈ F will work so the solution is not

unique.

Challenge: For this you will need to recall things about 2 × 2 linear systems. The upshot is

that the system can have either no or infinitely many solutions. ¤
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1.2. Vector spaces and subspaces

We now come to the key idea of a vector space. This involves an abstraction of properties

already met with in special cases when dealing with vectors and systems of linear equations.

Before meeting the general definition, here are some examples to have in mind as motivation.

The plane and 3-dimensional space are usually modelled with coordinates and their points

correspond to elements of R2 and R3 which we write in the form (x, y) or (x, y, z). These

are usually called vectors and they are added by adding corresponding coordinates. Scalar

multiplication is also defined by coordinate-wise multiplication with scalars. These operations

have geometric interpretations in terms of the parallelogram rule and dilation of vectors.

It is usual to identify the set of all real column vectors of length n with Rn, where (x1, . . . , xn)

corresponds to the column vector



x1
...

xn


. Note that the use of the different types of brackets is

very important here and will be used in this way throughout the course. Matrix addition and

scalar multiplication correspond to coordinate-wise addition and scalar multiplication in Rn.

More generally, the set of all m× n real matrices has an addition and scalar multiplication.

In the above, R can be replaced by C and all the algebraic properties are still available.

Now we give the very important definition of a vector space.

Definition 1.5. A vector space over a field of scalars F consists of a set V whose elements

are called vectors together with two algebraic operations, + (addition of vectors) and · (multi-

plication by scalars). Vectors will usually be denoted with boldface symbols such as v which is

hand written as v∼. The operations + and · are required to satisfy the following rules, which are

sometimes known as the vector space axioms.

Associativity: For u,v,w ∈ V and s, t ∈ F ,

(u+ v) +w = u+ (v +w),

(st) · v = s · (t · v).
Zero and unity: There is a unique element 0 ∈ V such that for v ∈ V ,

v + 0 = v = 0+ v,

and multiplication by 1 ∈ F satisfies

1 · v = v.

Distributivity: For s, t ∈ F and u,v ∈ V ,

(s+ t) · v = s · v + t · v,
s · (u+ v) = s · u+ s · u.

Commutativity: For u,v ∈ V ,

u+ v = v + u.

Additive inverses: For v ∈ V there is a unique element −v ∈ V for which

v + (−v) = 0 = (−v) + v.

Again it is normal to write sv in place of s · v when the meaning is clear. Care may need

to be exercised in correctly interpreting expressions such as

(st)v = (s× t) · v
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for s, t ∈ F and v ∈ V ; here the product (st) = (s× t) is calculated in F , while (st)v = (st) · v
is calculated in V . Note that we do not usually multiply vectors together, although there is a

special situation with the vector (or cross) product defined on R3, but we will not often consider

that in this course.

From now on, let V be a vector space over a field of scalars F . If F = R we refer to V as a

real vector space, while if F = C we refer to it as a complex vector space.

Proposition 1.6. For s ∈ F and v ∈ V , the following identities are valid:

0v = 0,(a)

s0 = 0,(b)

(−s)v =− (sv) = s(−v),(c)

and in particular, taking s = 1 we have

−v = (−1)v.(d)

Proof. The proofs are similar to those of Proposition 1.3, but need care in distinguishing

multiplication of scalars and scalar multiplication of vectors. ¤

Here are some important examples of vector spaces which will be met throughout the course.

Example 1.7. Let F be any field of scalars. For n = 1, 2, 3, . . ., let Fn denote the set of all

n-tuples t = (t1, . . . , tn) of elements of F . For s ∈ F and u,v ∈ Fn, we define

(u1, . . . , un) + (v1, . . . , vn) =(u1 + v1, . . . , un + vn),

s · (v1, . . . , vn) =s(v1, . . . , vn) = (sv1, . . . , svn).

The zero vector is 0 = (0, . . . , 0). The cases F = R and F = C will be the most important in

these notes.

Example 1.8. Let F be a field. The set Mm×n(F ) of all m × n matrices with entries in

F forms a vector space over F with addition and multiplication by scalars defined in the usual

way. We identify the set Mn×1(F ) with Fn, to obtain the vector space of Example 1.7. We also

set Mn(F ) = Mn×n(F ). In all cases, the zero vector of Mm×n(F ) is the zero matrix Om×n.

Example 1.9. The complex numbers C can be viewed as a vector space over R with the

usual addition and scalar multiplication being the usual multiplication.

More generally, if V is a complex vector space then we can view it as a real vector space

by only allowing real numbers as scalars. For example, Mm×n(C) becomes a real vector space

in this way as does Cn. We then refer to the real vector space V as the underlying real vector

space of the complex vector space V .

Example 1.10. Let F be a field. Consider the set F [X] consisting of all polynomials in X

with coefficients in F . We define addition and multiplication by scalars in F by

(a0 + a1X + · · ·+ arX
r) + (b0 + b1X + · · ·+ brX

r)

=(a0 + b0) + (a1 + b1)X + · · ·+ (ar + br)X
r,

s · (a0 + a1X + · · ·+ arX
r) =(sa0) + (sa1)X + · · ·+ (sar)X

r.

The zero vector is the zero polynomial

0 = 0 + 0X + · · ·+ 0Xr = 0.
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Example 1.11. Take R to be the field of scalars and consider the set D(R) consisting of

all infinitely differentiable functions R −→ R, i.e., functions f : R −→ R for which all possible

derivatives f (n)(x) exist for n > 1 and x ∈ R. We define addition and multiplication by scalars

as follows. Let t ∈ R and f, g ∈ D(R), then f + g and s · f are the functions given by the

following rules: for x ∈ R,
(f + g)(x) = f(x) + g(x),

(s · f)(x) = sf(x).

Of course we really ought check that all the derivatives of f + g and s · f exist so that these

function are in D(R), but this is an exercise in Calculus. The zero vector here is the constant

function which sends every real number to 0, and this is usually written 0 in Calculus, although

this might seem confusing in our context! More generally, for a given real number a, it is also

standard to write a for the constant function which sends every real number to a.

Note that Example 1.10 can also be viewed as a vector space consisting of functions since

every polynomial over a field can be thought of as the function obtained by evaluation of the

variable at values in F . When F = R, R[X] ⊆ D(R) and we will see that this is an example of

a vector subspace which will be defined soon after some motivating examples.

Example 1.12. Let V be a vector space over a field of scalars F . Suppose that W ⊆ V

contains 0 and is closed under addition and multiplication by scalars, i.e., for s ∈ F and

u,v ∈ W , we have

u+ v ∈ W, su ∈ W.

Then W is also a vector space over F .

Example 1.13. Consider the case where F = R and V = R2. Then the line L with equation

2x− y = 0

consists of all vectors of the form (t, 2t) with t ∈ R, i.e.,
L = {(t, 2t) ∈ R2 : t ∈ R}.

Clearly this passes through the origin so it contains 0. It is also closed under addition and

scalar multiplication: if (t, 2t), (t1, 2t1), (t2, 2t2) ∈ L and s ∈ R then

(t1, 2t1) + (t2, 2t2) = (t1 + t2, 2t1 + 2t2)

= (t1 + t2, 2(t1 + t2)) ∈ L,

s(t, 2t) = (st, 2(st)) ∈ L.

More generally, any line with equation of form

ax+ by = 0

with (a, b) 6= 0 = (0, 0) is similarly closed under addition and multiplication by scalars.

Example 1.14. Consider the case where F = R and V = R3. If (a, b, c) ∈ R3 is non-zero,

then consider the plane P with equation

ax+ by + cz = 0,

thus as a set P is given by

P = {(x, y, z) ∈ R3 : ax+ by + cz = 0}.
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Then P contains 0 and is closed under addition and scalar multiplication since whenever

(x, y, z), (x1, y1, z1), (x2, y2, z2) ∈ P and s ∈ R, the sum (x1, y1, z1)+ (x2, y2, z2) = (x1+x2, y1+

y2, z1 + z2) satisfies

a(x1 + x2) + b(y1 + y2) + c(z1 + z2) = (ax1 + by1 + cz1) + (ax2 + by2 + cz2) = 0,

while the scalar multiple s(x, y, z) = (sx, sy, sz) satisfies

a(sx) + b(sy) + c(sz) = s(ax+ by + cz) = 0,

showing that

(x1, y1, z1) + (x2, y2, z2), s(x, y, z) ∈ P.

A line in R3 through the origin consists of all vectors of the form tu for t ∈ R, where u is

some non-zero direction vector. This is also closed under addition and scalar multiplication.

Definition 1.15. Let V be a vector space over a field of scalars F . Suppose that the subset

W ⊆ V is non-empty and is closed under addition and multiplication by scalars, thus it forms

a vector space over F . Then W is called a (vector) subspace of V .

Remark 1.16.

• In order to verify that W is non-empty it is usually easiest to show that it contains the

zero vector 0.

• The conditions for W to be closed under addition and scalar multiplication are equiv-

alent to the single condition that for all s, t ∈ F and u,v ∈ W ,

su+ tv ∈ W.

• If W ⊆ V is a subspace, then for any w ∈ W , all of its scalar multiples (including

0w = 0 and (−1)w = −w) are also in W .

Example 1.17. Let V be a vector space over a field F .

• The sets {0} and V are both subspaces of V , usually thought of as its uninteresting

subspaces.

• If v ∈ V is a non-zero vector, then {v} is never a subspace of V since (for example)

0v = 0 is not an element of {v}.
• The smallest subspace of V containing a given non-zero vector v is the line spanned by

v which is the set of all scalar multiplies of v,

{tv : t ∈ F}.
Before giving more examples, here are some non-examples.

Example 1.18. Consider the real vector space R2 and the following subsets with the same

addition and scalar multiplication.

(a) V1 = {(x, y) ∈ R2 : x > 0} is not a real vector space: for example, given any vector

(x, y) ∈ V1 with x > 0, there is no additive inverse −(x, y) ∈ V1 since this would have to be

(−x,−y) which has −x < 0. So V1 is not closed under addition.

(b) V2 = {(x, y) ∈ R2 : y = x2} is not a real vector space: for example, (1, 1) ∈ V2 but

2(1, 1) = (2, 2) does not satisfy y = x2 since x2 = 4 and y = 2. So V2 is not closed under scalar

multiplication.

(c) V3 = {(x, y) ∈ R2 : x = 2} is not a real vector space: for example, (2, 0), (2, 1) ∈ V3 but

(2, 0) + (2, 1) = (4, 1) /∈ V3, so V3 is not closed under addition.
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Here are some further examples of subspaces.

Example 1.19. Suppose that F is a field and that we have a system of homogenous linear

equations

(1.1)





a11x1 + · · · + a1nxn = 0
...

. . .
...

...

am1x1 + · · · + amnxn = 0





for scalars aij ∈ F . Then the set W of solutions (x1, . . . , xn) =



x1
...

xn


 in Fn of the system (1.1)

is a subspace of Fn. This is most easily checked by recalling that the system is equivalent to a

single matrix equation

(1.2) Ax = 0,

where A = [aij ] and then verifying that given solutions x,y ∈ W and s ∈ F ,

A(x+ y) = Ax+Ay = 0+ 0 = 0,

and

A(sx) = s(Ax) = s(A0) = s0 = 0.

This example indicates an extremely important relationship between vector space ideas and

linear equations, and this is one of the main themes in the subject of Linear Algebra.

Example 1.20. Recall the vector space F [X] of Example 1.10. Consider the following

subsets of F [X]:

W0 = F [X],

W1 = {f(X) ∈ F [X] : f(0) = 0},
W2 = {f(X) ∈ F [X] : f(0) = f ′(0) = 0},

and in general, for n > 1,

Wn = {f(X) ∈ F [X] : for k = 0, . . . , n− 1, f (k)(0) = 0}.
Show that each Wn is a subspace of F [X] and that Wn is a subspace of Wn−1.

Solution. Let n > 1. Suppose that s, t ∈ F and f(X), g(X) ∈ Wn. Then for each

k = 0, . . . , n− 1 we have

f (k)(0) = 0 = g(k)(0),

hence
dk

dXk
(sf(X) + tg(X)) = sf (k)(X) + tg(k)(X),

and evaluating at X = 0 gives

dk

dXk
(sf + tg)(0) = sf (k)(0) + tg(k)(0) = 0.

This shows that Wn is closed under addition and scalar multiplication, therefore it is a subspace

of F [X]. Clearly Wn ⊆ Wn−1 and as it is closed under addition and scalar multiplication, it is

a subspace of Wn−1. ¤
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We can combine subspaces to form new subspaces. Given subsets Y1, . . . , Yn ⊆ X of a set

X, their intersection is the subset

Y1 ∩ Y2 ∩ · · · ∩ Yn = {x ∈ X : for k = 1, . . . , n, x ∈ Yk} ⊆ X,

while their union is the subset

Y1 ∪ Y2 ∪ · · · ∪ Yn = {x ∈ X : there is a k = 1, . . . , n such that x ∈ Yk} ⊆ X,

Proposition 1.21. Let V be a vector space. If W1, . . . ,Wn ⊆ V are subspaces of V , then

W1 ∩ · · · ∩Wn is a subspace of V .

Proof. Let s, t ∈ F and u,v ∈ W1 ∩ · · · ∩ Wn. Then for each k = 1, . . . , n we have

u,v ∈ Wk, and since Wk is a subspace,

su+ tv ∈ Wk.

But this means that

su+ tv ∈ W1 ∩ · · · ∩Wn,

i.e., W1 ∩ · · · ∩Wn is a subspace of V . ¤

On the other hand, the union of subspace does not always behave so well.

Example 1.22. Consider the real vector space R2 and the subspaces

W ′ = {(s, 0) : s ∈ R}, W ′′ = {(0, t) : t ∈ R}.
Show that W ′ ∪W ′′ is not a subspace of R2 and determine W ′ ∩W ′′.

Solution. The union of these subspaces is

W ′ ∪W ′′ = {v ∈ R2 : v = (s, 0) or v = (0, s) for some s ∈ R}.
Then (1, 0) ∈ W ′ and (0, 1) ∈ W ′′, but

(1, 1) = (1, 0) + (0, 1)

is visibly not in W ′ ∪ W ′′, so this is not closed under addition. (However, it is closed under

scalar multiplication, so care is required when checking this sort of example.)

If x ∈ W ′ ∩ W ′′ then x = (s, 0) and x = (0, t) for some s, t ∈ R, which is only possible if

s = t = 0 and so x = (0, 0). Therefore W ′ ∩W ′′ = {0}. ¤

Here is another way to think about Example 1.19.

Example 1.23. Suppose that F is a field and that we have a system of homogenous linear

equations 



a11x1 + · · · + a1nxn = 0
...

. . .
...

...

am1x1 + · · · + amnxn = 0





with the aij ∈ F .

For each r = 1, . . . ,m, let

Wr = {(x1, . . . , xn) : ar1x1 + · · ·+ arnxn = 0} ⊆ Fn,

which is a subspace of Fn.
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Then the set W of solutions (x1, . . . , xn) of the above linear system is given by the intersec-

tion

W = W1 ∩ · · · ∩Wm,

therefore W is a subspace of Fn.

Example 1.24. In the real vector space R4, determine the intersection U∩V of the subspaces

U = {(w, x, y, z) ∈ R4 : x+ 2y = 0 = w + 2x− z}, V = {(w, x, y, z) ∈ R4 : w + x+ 2y = 0}.
Solution. Before doing this we first use elementary row operations to find the general

solutions of the systems of equations used to define U and V .

For U we consider the system{
x + 2y = 0

w + 2x − z = 0

}

with augmented matrix[
0 1 2 0 0

1 2 0 −1 0

]
∼

R1↔R2

[
1 2 0 −1 0

0 1 2 0 0

]
∼

R1→R1−2R2

[
1 0 −4 −1 0

0 1 2 0 0

]
,

where the last matrix is a reduced echelon matrix. So the general solution vector of this system

is (4s+ t,−2s, s, t) where s, t ∈ R. Thus we have

U = {(4s+ t,−2s, s, t) ∈ R4 : s, t ∈ R}.
Similarly, the general solution vector of the equation

w + x+ 2y = 0

is (−r − 2s, r, s, t) where r, s, t ∈ R and we have

V = {(−r − 2s, r, s, t) ∈ R4 : r, s, t ∈ R}.
Now to find U ∩ V we have to solve the system




x + 2y = 0

w + 2x − z = 0

w + x + 2y = 0





with augmented matrix


0 1 2 0 0

1 2 0 −1 0

1 1 2 0 0


 ∼

R1↔R2



1 2 0 −1 0

0 1 2 0 0

1 1 2 0 0


 ∼

R3→R3−R1



1 2 0 −1 0

0 1 2 0 0

0 −1 2 1 0




∼
R1→R1−2R2
R3→R3+R1



1 0 −4 −1 0

0 1 2 0 0

0 0 4 1 0


 ∼

R3→(1/4)R3



1 0 −4 −1 0

0 1 2 0 0

0 0 1 1/4 0




∼
R1→R1+4R3
R2→R2−2R3



1 0 0 0 0

0 1 0 −1/2 0

0 0 1 1/4 0


 ,

where the last matrix is reduced echelon. The general solution vector is (0, t/2,−t/4, t) where

t ∈ R, thus we have

U ∩ V = {(0, t/2,−t/4, t) : t ∈ R} = {(0, 2s,−s, 4s) : s ∈ R}. ¤





CHAPTER 2

Spanning sequences, linear independence and bases

When working with R2 or R3 we often use the fact that every vector v can be expressed in

terms of the standard basis vectors e1, e2 or e1, e2, e3 i.e.,

v = xe1 + ye2 or v = xe1 + ye2 + ze3,

where v = (x, y) or v = (x, y, z). Something similar is true for every vector space and involves

the concepts of spanning sequence and basis.

2.1. Linear combinations and spanning sequences

We will always assume that V is a vector space over a field F .

The first notion we will require is that of a linear combination.

Definition 2.1. If t1, . . . , tr ∈ F and v1, . . . ,vr is a sequence of vectors in V (some of which

may be 0 or may be repeated), then the vector

t1v1 + · · ·+ trvr ∈ V

is said to be a linear combination of the sequence v1, . . . ,vr (or of the vectors vi). Sometimes

it is useful to allow r = 0 and view the 0 as a linear combination of the elements of the empty

sequence ∅.

A sequence is often denoted (v1, . . . ,vr), but we will not use that notation to avoid confusion

with the notation for elements of Fn.

We will sometimes refer to a sequence v1, . . . ,vr of vectors in V as a sequence in V . There

are various operations which can be performing on sequences such as deleting terms, reordering

terms, multiplying terms by non-zero scalars, combining two sequences into a new one by

concatinating them in either order.

Notice that 0 can be expressed as a linear combination in other ways. For example, when

F = R and V = R2,

3(1,−1) + (−3)(2, 0) + 3(1, 1) = 0, 1(0, 0) = 0, 1(5, 0) + 0(0, 0) + (−5)(1, 0) = 0,

so 0 is a linear combination of each of the sequences

(1,−1), (2, 0), (1, 1), 0, (5, 0),0, (1, 0).

For any sequence v1, . . . ,vr we can always write

0 = 0v1 + · · ·+ 0vr,

so 0 is a linear combination of any sequence (even the empty sequence of length 0).

Sometimes it is useful to allow infinite sequences as in the next example.

11
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Example 2.2. Let F be a field and consider the vector space of polynomials F [X]. Then

every f(X) ∈ F [X] has a unique expression of the form

f(X) = a0 + a1X + · · ·+ arX
r + · · · ,

where ai ∈ F and for large i, ai = 0. Thus every polynomial in F [X] can be uniquely written

as a linear combination of the sequence 1, X,X2, . . . , Xr, . . ..

Such a special set of vectors is called a basis and soon we will develop the theory of bases.

Bases are extremely important and essential for working in vector spaces. In applications such

as to Fourier series, there are bases consisting of trigonometric functions, while in other context

orthogonal polynomials play this rôle.

Definition 2.3. Let S : w1, . . . be a sequence (possibly infinite) of elements of V . Then

S is a spanning sequence for V (or is said to span V ) if for every element v ∈ V there is an

expression of the form

v = s1w1 + · · ·+ skwk,

where s1, . . . , sk ∈ F , i.e., every vector in V is a linear combination of the sequence S.

Notice that in this definition we do not require any sort of uniqueness of the expansion.

Definition 2.4. Let S : w1, . . . be a sequence of elements of V . Then the linear span of S,

Span(S) ⊆ V , is the subset consisting of all linear combinations of S, i.e.,

Span(S) = {t1w1 + · · ·+ trwr : r = 0, 1, 2, . . . , ti ∈ F}.

Remark 2.5.

• By definition, S is a spanning sequence for Span(S).

• We always have 0 ∈ Span(S).

• If S = ∅ is the empty sequence, then we make the definition Span(S) = {0}.

Lemma 2.6. Let S : w1, . . . be a sequence of elements of V . Then the following hold.

(a) Span(S) ⊆ V is a subspace and S is a spanning sequence of Span(S).

(b) Every subspace of V containing the elements of S contains Span(S) as a subspace, therefore

Span(S) is the smallest such subspace.

(c) If S′ is a subsequence of S, then Span(S′) ⊆ Span(S).

In (c), we use the idea that S′ is a subsequence of S if it is obtained from S by removing

some terms and renumbering. For example, if S : u,v,w is a sequence then the following are

subsequences:

S′ : u,v, S′′ : u,w, S′′′ : v.

Proof. (a) It is easy to see that any sum of linear combinations of elements for S is also

such a linear combination, similarly for scalar multiples.

(b) If a subspace W ⊆ V contains all the elements of S, then all linear combinations of S are

in W , therefore Span(S) ⊆ W .

(c) This follows from (b) since the elements of S′ are all in Span(S). ¤

Definition 2.7. The vector space V is called finite dimensional if it has a spanning sequence

S : w1, . . . ,w` of finite length `.
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Much of the theory we will develop will be about finite dimensional vector spaces although

many important examples are infinite dimensional.

Here are some further useful properties of sequences and the subspaces they span.

Proposition 2.8. Let S : w1, . . . be a sequence in V . Then the following hold.

(a) If S′ : w′
1, . . . is a sequence obtained by permuting (i.e., reordering) the terms of S, then

Span(S′) = Span(S). Hence the span of a sequence is unchanged by permuting its terms.

(b) If r > 1 and wr ∈ Span(w1, . . . ,wr−1), then for the sequence

S′′ : w1, . . . ,wr−1,wr+1, . . . ,

we have Span(S′′) = Span(S). In particular, we can remove 0’s and any repetitions of vectors

without changing the span of a sequence.

(c) If s > 1 and S′′′ is obtained from S by replacing ws by a vector of the form

w′′′
s = (x1w1 + · · ·+ xs−1ws−1) +ws,

where x1, . . . , xs−1 ∈ F , then Span(S′′′) = Span(S).

(d) If t1, . . . is sequence of non-zero scalars, then for the sequence

T : t1w1, t2w2, . . .

we have Span(T ) = Span(S).

Proof. (a),(b),(d) are simple consequences of the commutativity, associativity and dis-

tributivity of addition and scalar multiplication of vectors. (c) follows from the obvious fact

that

Span(w1, . . . ,ws−1,w
′′′
s ) = Span(w1, . . . ,ws−1,ws). ¤

2.2. Linear independence and bases

Now we introduce a notion which is related to the uniqueness issue.

Definition 2.9. Let S : w1, . . . be a sequence in V .

• S is linearly dependent if for some r > 1 there are scalars s1, . . . , sr ∈ F not all zero

and for which

s1w1 + · · ·+ srwr = 0.

• S is linearly independent if it is not linearly dependent. This means that whenever

s1, . . . , sr ∈ F satisfy

s1w1 + · · ·+ srwr = 0,

then s1 = · · · = sr = 0.

Example 2.10.

• Any sequence S containing 0 is linearly dependent since 1 · 0 = 0.

• If a vector v occurs twice in S then 1v+ (−1)v = 0, so again S is linearly dependent.

• If a vector in S can be expressed as a linear combination of the list obtained by deleting

it, then S is linearly dependent.

• In the real vector space R2, the sequence (1, 2), (3,−1), (0, 7) is linearly dependent since

3(1, 2) + (−1)(3,−1) + (−1)(0, 7) = (0, 0),

while its subsequence (1, 2), (3,−1) is linearly independent.
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Lemma 2.11. Suppose that S : w1, . . . is a linearly dependent sequence in V . Then there is

some k > 1 and scalars t1, . . . , tk−1 ∈ F for which

wk = t1w1 + · · ·+ tk−1wk−1.

Hence if S′ is the sequence obtained by deleting wk then Span(S′) = Span(S).

Proof. Since S is linearly dependence, there must be an r > 1 and scalars s1, . . . , sr ∈ F

where not all of the si are zero and they satisfy

s1w1 + · · ·+ srwr = 0.

Let k be the largest value of i for which si 6= 0. Then

s1w1 + · · ·+ skwk = 0.

with sk 6= 0. Multiplying by s−1
k gives

s−1
k (s1w1 + · · ·+ skwk) = s−1

k 0 = 0,

whence

s−1
k s1w1 + s−1

k s2w2 + · · ·+ s−1
k skwk = s−1

k s1w1 + s−1
k s2w2 + · · ·+ s−1

k sk−1wk−1 +wk = 0.

Thus we have

wk = (−s−1
k s1)w1 + · · ·+ (−s−1

k sk−1)wk−1.

The equality of the two spans is clear. ¤

The next result is analogous to Proposition 2.8 for spanning sequences.

Proposition 2.12. Let S : w1, . . . be a sequence in V . Then the following hold.

(a) If S′ : w′
1, . . . is a sequence obtained by permuting the terms of S, then S′ is linearly depen-

dent (respectively linearly independent) if S is.

(b) If s > 1 and S′′ is obtained from S by replacing ws by a vector of the form

w′′
s = (x1w1 + · · ·+ xs−1ws−1) +ws,

where x1, . . . , xs−1 ∈ F , then S′′ is linearly dependent (respectively linearly independent) if S

is.

(c) If t1, . . . is sequence of non-zero scalars, then for the sequence

T : t1w1, t2w2, . . . ,

we have T linearly dependent (resp. linearly independent) if S is.

Proof. Again these are simple consequences of properties of addition and scalar multipli-

cation. ¤

Proposition 2.13. Suppose that S : w1, . . . be a linearly independent sequence in V . If for

some k > 1, the scalars s1, . . . , sk, t1, . . . , tk ∈ F satisfy

s1w1 + · · ·+ skwk = t1w1 + · · ·+ tkwk,

then s1 = t1, . . . , sk = tk. Hence every vector has at most one expression as a linear combination

of S.
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Proof. The equation can be rewritten as

(s1 − t1)w1 + · · ·+ (sk − tk)wk = 0.

Now linear independence shows that each coefficient satisfies (si − ti) = 0. ¤

Proposition 2.14. Let S : w1, . . . be a spanning sequence for V . Then there is a subsequence

T of S which is a spanning sequence for V and is also linearly independent.

Proof. We indicate a proof for the case when S is finite, the general case is slightly more

involved. Notice that Span(S) = V and for some n > 1, the sequence is S : w1, . . . ,wn.

If S is already linearly independent then we can take T = S. Otherwise, by Lemma 2.11,

one of the wi can be expressed as a linear combination of the others; let k1 be the largest such

i. Then wk1 can be expressed as a linear combination of the list

S1 : w1, . . .wk1−1,wk1+1, . . . ,wn

and we have Span(S1) = Span(S) = V , so S1 is a spanning sequence for V . The length of S1 is

n− 1 < n, so this sequence is shorter than S.

Clearly we can repeat this obtaining new spanning sequences S1, S2, . . . for V , where the

lengths of Sr is n − r. Eventually we must get to a spanning sequence Sk which cannot be

reduced further, but this must be linearly independent. ¤

Example 2.15. Taking F = R and V = R2, show that the sequence

S : (1, 2), (1, 1), (−1, 0), (1, 3)

spans R2 and find a linearly independent spanning subsequence of S.

Solution. Following the idea in the proof of Proposition 2.14, first observe that

(1, 3) = 3(1, 1) + 2(−1, 0),

so we can replace S by the sequence S′ : (1, 2), (1, 1), (−1, 0) for which Span(S′) = Span(S).

Next notice that

(−1, 0) = (1, 2) + (−2)(1, 1),

so we can replace S′ by the sequence S′′ : (1, 2), (1, 1) for which Span(S′′) = Span(S′) = Span(S).

For every (a, b) ∈ R2, the equation

x(1, 2) + y(1, 1) = (a, b)

corresponds to the matrix equation
[
1 1

2 1

][
x

y

]
=

[
a

b

]
,

and since det

[
1 1

2 1

]
= −1 6= 0, this has the unique solution

[
x

y

]
=

[
1 1

2 1

]−1 [
a

b

]
=

[
−1 1

2 −1

][
a

b

]
.

Thus S′′ spans R2 and is linearly independent. ¤

The next definition is very important.
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Definition 2.16. A linearly independent spanning sequence of a vector space V is called a

basis of V .

The next result shows why bases are useful and leads to the notion of coordinates with

respect to a basis which will be introduced in Section 2.3.

Proposition 2.17. Let V be a vector space over F . A sequence S in V is a basis of V if

and only if every vector of V has a unique expression as a linear combination of S.

Proof. This follows from Proposition 2.13 together with the fact that a basis is a spanning

sequence. ¤

Theorem 2.18. If S is a spanning sequence of V , then there is a subsequence of S which

is a basis. In particular, if V is finite dimensional then it has a finite basis.

Proof. The first part follows from Proposition 2.14. For the second part, start with a

finite spanning sequence then find a subsequence which is a basis, and note that this sequence

is finite. ¤

Example 2.19. Consider the vector space V = R3 over R. Show that the sequence

S : (1, 0, 1), (1, 1, 1), (1, 2, 1), (1,−1, 2)

is a spanning sequence of V and find a subsequence which is a basis.

Solution. The following method for the first part uses the general approach to solving

systems of linear equations. Given any numbers h1, h2, h3 ∈ R, consider the equation

x1(1, 0, 1) + x2(1, 1, 1) + x3(1, 2, 1) + x4(1,−1, 2) = (h1, h2, h3) = h.

This is equivalent to the system




x1 + x2 + x3 + x4 = h1

x2 + 2x3 − x4 = h2

x1 + x2 + x3 + 2x4 = h3





which has augmented matrix

[A | h] =



1 1 1 1 h1

0 1 2 −1 h2

1 1 1 2 h3


 .

Performing elementary row operations we find that

[A | h] ∼
R3→R3−R1



1 1 1 1 h1

0 1 2 −1 h2

0 0 0 1 h3 − h1


 ∼

R1→R1−R2



1 0 −1 2 h1 − h2

0 1 2 −1 h2

0 0 0 1 h3 − h1




∼
R1→R1−2R3
R2→R2+R3



1 0 −1 0 3h1 − h2 − 2h3

0 1 2 0 −h1 + h2 + h3

0 0 0 1 −h1 + h3


 ,

where the last matrix is reduced echelon. So the system is consistent with general solution

x1 = s+ 3h1 − h2 − 2h3, x2 = −2s− h1 + h2 + h3, x3 = s, x4 = −h1 + h3 (s ∈ R).
So every element of R3 can indeed be expressed as a linear combination of S.
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Notice that when h = 0 we have the solution

x1 = s, x2 = −2s, x3 = s, x4 = 0 (s ∈ R).
Thus shows that S is linearly dependent. Taking for example s = 1, we see that

(1, 0, 1)− 2(1, 1, 1) + (1, 2, 1) + 0(1,−1, 2) = 0,

hence

(1, 2, 1) = (−1)(1, 0, 1) + 2(1, 1, 1) + 0(1,−1, 2),

so the sequence T : (1, 0, 1), (1, 1, 1), (1,−1, 2) also spans R3. Notice that there is exactly one

solution of the above system of equations for h = 0 with s = 0, so T is linearly independent

and therefore it is a basis for R3. ¤

The approach of the last example leads to a general method. We state it over any field

F since the method works in general. For this we need to recall the idea of a reduced echelon

matrix and the way this is used to determine the general solution of a system of linear equations.

Theorem 2.20. Suppose that a1, . . . ,an is a sequence of vectors in Fm. Let A = [a1 · · · an]
be the m× n matrix with aj as its j-th column and let A′ be its reduced echelon matrix.

(a) a1, . . . ,an is a spanning sequence of Fm if and only if the number of non-zero rows of A′

is m.

(b) If the j-th column of A′ does not contain a pivot, then the corresponding vector aj is

expressible as a linear combination of those associated with columns which do contain a pivot.

Such a linear combination can found by setting the free variable for the j-th column equal to 1

and all the other free variables equal to 0.

(c) The vectors ai for those i where the i-th column of A′ contains a pivot, form a basis for

Span(a1, . . . ,an).

Here is another kind of situation.

Example 2.21. Consider the vector space R3 over R. Find a basis for the plane W with

equation

x− 2y + 3z = 0.

Solution. This time we need to start with a system of one equation and its associated

matrix
[
1 −2 3

]
which is reduced echelon, hence we have the general solution

x = 2s− 3t, y = s, z = t (s, t ∈ R).
So every vector (x, y, z) in W is a linear combination

(x, y, z) = s(2, 1, 0) + t(−3, 0, 1)

of the sequence (2, 1, 0), (−3, 0, 1) obtained by setting s = 1, t = 0 and s = 0, t = 1 respectively.

In fact this expression is unique since these two vectors are linearly independent. ¤

Example 2.22. Consider the vector space D(R) over R discussed in Example 1.11. Let

W ⊆ D(R) be the set of all solutions of the differential equation

dy

dx
+ 3y = 0.

Show that W is a subspace of D(R) and find a basis for it.
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Solution. It is easy to see that W is a subspace. Notice that if y1, y2 are two solutions

then

d(y1 + y2)

dx
+ 3(y1 + y2) =

dy1
dx

+
dy2
dx

+ 3y1 + 3y2

=

(
dy1
dx

+ 3y1

)
+

(
dy2
dx

+ 3y2

)
= 0,

hence y1 + y2 is a solution. Also, if y is a solution and s ∈ R, then
d(sy)

dx
+ 3(sy) = s

dy

dx
+ s(3y)

= s

(
dy

dx
+ 3y

)
= 0,

so sy is a solution. Clearly the constant function 0 is a solution.

The general solution is

y = ae−3x (a ∈ R),
so the function e−3x spans W . Furthermore, if for some t ∈ R,

se−3x = 0,

where the right hand side means the constant function, this has to hold for every x ∈ R. Taking
x = 0 we find that

t = te0 = 0,

so t = 0. Hence the sequence e−3x is a basis of W . ¤

A good exercise is to try to generalise this, for example by considering the solutions of the

differential equation
d2y

dx2
− 6y = 0.

There is a brief review of the solution of ordinary differential equations in Appendix A. Here is

another example.

Example 2.23. Let W ⊆ D(R) be the set of all solutions of the differential equation

d2y

dx2
+ 4y = 0.

Show that W is a subspace of D(R) and find a basis for it.

Solution. Checking W is a subspace is similar to Example 2.22 The general solution has

the form

y = a cos 2x+ b sin 2x (a, b ∈ R),
so the functions cos 2x, b sin 2x span W . Suppose that for some s, t ∈ R,

s cos 2x+ t sin 2x = 0,

where the right hand side means the constant function. This has to hold whatever the value of

x ∈ R, so try taking values x = 0, π/4. These give the equations

s cos 0 + t sin 0 = 0, s cosπ/2 + t sinπ/2 = 0,

i.e., s = 0, t = 0. So cos 2x, sin 2x are linearly independent and hence cos 2x, sin 2x is a basis.

Notice that this is a finite dimensional vector space. ¤
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Example 2.24. Let R∞ denote the set consisting of all sequences (an) of real numbers which

satisfy an = 0 for all large enough n, i.e.,

(an) = (a1, a2, . . . , ak, 0, 0, 0, . . .).

This can be viewed as a vector space over R with addition and scalar multiplication given by

(an) + (bn) = (an + bn),

t · (cn) = (tcn).

Then the sequences

er = (0, . . . , 0, 1, 0, . . .)

with a single 1 in the r-th place, form a basis for R∞.

Solution. First note that

(xn) = (x1, x2, . . . , xk, 0, 0, 0, . . .)

can be expressed as

(xn) = x1e1 + · · ·+ xkek,

so the ei span R∞. If

t1e1 + · · ·+ tkek = (0),

then

(tn) = (t1, . . . , tk, 0, 0, 0, . . .) = (0, . . . , 0, . . .),

and so tk = 0 for all k. Thus the ei are also linearly independent. ¤

Here is another important method for constructing bases.

Theorem 2.25. Let V be a finite dimensional vector space and let S be a linearly indepen-

dent sequence in V . Then there is a basis S′ of V in which S is a subsequence. In particular, S

and S′ are both finite.

Proof. We will indicate a proof for the case where S is a finite sequence. Choose a finite

spanning sequence, say T : w1, . . . ,wk. By Proposition 2.14 we might as well assume that T is

linearly independent.

If S does not span V then certainly S, T (the sequence obtained by joining S and T together)

spans (since T does). Now choose the largest value of ` = 1, . . . , k for which the sequence

S` = S,w1, . . . ,w`

is linearly independent. Then S, T is linearly dependent and if ` < k, we can write wk as a

linear combination of S,w1, . . . ,wk−1, so this is still a spanning set for V . Similarly we can

keep discarding the vectors wk−j for j = 0, . . . , (k− `−1) and at each stage we have a spanning

sequence

S,w1, . . . ,wk−j−1.

Eventually we are left with just S` which is still a spanning set for V as well as being linearly

independent, and this is the required basis. ¤

Theorem 2.26. Let V be a finite dimensional vector space and suppose that it has a basis

with n elements. Then any other basis is also finite and has n elements.

This result allows us to make the following important definition.
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Definition 2.27. Let V be a finite dimensional vector space. Then the number of elements

in any basis of V is finite and is called the dimension of the vector space V and is denoted

dimF V or just dimV if the field is clear.

Example 2.28. Let F be any field. Then the vector space Fn over F has dimension n, i.e.,

dimF Fn = n.

Proof. For each k = 1, 2, . . . , n let ek = (0, . . . , 0, 1, 0, . . . , 0) (with the 1 in the k-th place).

Then the sequence e1, . . . , en spans Fn since for any vector (x1, . . . , xn) ∈ Fn,

(x1, . . . , xn) = x1e1 + · · ·+ xnen.

Also, if the right hand side is 0, then (x1, . . . , xn) = (0, . . . , 0) and so x1 = · · · = xn = 0,

showing that this sequence is linearly independent. Therefore, e1, . . . , en is a basis for Fn and

dimF Fn = n.

The basis e1, . . . , en of Fn is often called the standard basis of Fn. ¤

Proof of Theorem 2.26. Let B : b1, . . . ,bn be a basis and suppose that S : w1, . . . is

another basis for V . We will assume that S is finite, say S : w1, . . . ,wm, the more general case

is similar.

The sequence w1,b1, . . . ,bn must be linearly dependent since B spans V . As B is linearly

independent, there is a number k1 = 1, . . . , n for which

bk1 = s0w1 + s1b1 + · · ·+ sk1−1bk1−1

for some scalars s0, s1 . . . , sk1−1. By reordering B, we can assume that k1 = n, so

bn = s0w1 + s1b1 + · · ·+ sn−1bn−1,

where s0 6= 0 since B is linearly independent. Thus the sequence B1 : w1,b1, . . . ,bn−1 spans V .

If it were linearly dependent then there would be an equation of the form

t0w1 + t1b1 + · · ·+ tn−1bn−1 = 0

in which not all the ti are zero; in fact t0 6= 0 since B is linearly independent. From this we

obtain a non-trivial linear combination of the form

t′1b1 + · · ·+ t′nbn = 0,

which is impossible. Thus B1 is a basis.

Now we repeat this argument with w2, w3, and so on, at each stage forming (possibly after

reordering and renumbering the bi’s) a sequence Bk : w1, . . . ,wk,b1, . . . ,bn−k which is linearly

independent and a spanning sequence for V , i.e., it is a basis.

If the length of S were finite (say equal to `) and less than the length of B (i.e., ` < n),

then the sequence B` : w1, . . . ,w`,b1, . . . ,bn−` would be a basis. But then B` = S and so we

could not have any bi at the right hand end since S is a spanning sequence, so B` would be

linearly dependent. Thus we must be able to find at least n terms of S, and so eventually we

obtain the sequence Bn : w1, . . . ,wn which is a basis. This shows that S must have finite length

which equals the length of B, i.e., any two bases have finite and equal length . ¤

The next result is obtained from our earlier results.
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Proposition 2.29. Let V be a finite dimensional vector space of dimension n. Suppose

that R : v1, . . . ,vr is a linearly independent sequence in V and that S : w1, . . . ,ws is a spanning

sequence in V . Then the following inequalities are satisfied:

r 6 n 6 s.

Furthermore, R is a basis if and only if r = n, while S is a basis if and only if s = n.

Theorem 2.30. Let V be a finite dimensional vector space and suppose that W ⊆ V is a

vector subspace. Then W is finite dimensional and

dimW 6 dimV,

with equality precisely when W = V .

Proof. Choose a basis S for W . Then by Theorem 2.25, this extends to a basis S′ for and
these are both finite sets with dimW and dimV elements respectively. As S is subsequence of

S′, we have

dimW 6 dimV,

with equality exactly when S = S′, which can only happen when W = V . ¤

A similar inequality holds when the vector space V is infinite dimensional.

Example 2.31. Recall from Example 2.23 the infinite dimensional real vector space D(R)
and the subspace W ⊆ D(R). Then dimW = 2 since the vectors cos 2x, sin 2x were shown to

form a basis.

The next result gives are some other characterisations of bases in a vector space V . Let X

and Y be sets; then X is a proper subset of Y (indicated by X ( Y ) if X ⊆ Y and X 6= Y .

Proposition 2.32. Let S be a sequence in V .

• Let S be a spanning sequence of V . Then S is a basis if and only if it is a minimal

spanning sequence, i.e., no proper subsequence of S is a spanning sequence.

• Let S be a linearly independent sequence. Then is a basis if and only if it is a maximal

linearly independent set, i.e., no sequence in V containing S as a proper subsequence

is linearly independent.

Proof. Again this follows from things we already know. ¤

Example 2.33. Recall Example 1.8: given a field of scalars F , for each pair m,n > 1

we have the vector space over F consisting of all m × n matrices with entries in F , namely

Mm×n(F ).

For r = 1, . . . ,m and s = 1, . . . , n let Ers be the m × n matrix all of whose entries is 0

except for the (r, s) entry which is 1.

Now any matrix [aij ] ∈ Mm×n(F ) can be expressed in the form

m∑

r=1

n∑

s=1

arsE
rs,

so the matrices Ers span Mm×n(F ). But the only way that the expression on the right hand

side can be the zero matrix is if [aij ] = Om×n, i.e., if aij = 0 for every entry aij . Thus the Ers

form a basis and so

dimF Mm×n(F ) = mn.
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In particular,

dimF Mn(F ) = n2

and

dimF Mn×1(F ) = n = dimF M1×n(F ).

The next result provides another useful way to find a basis for a subspace of Fn.

Proposition 2.34. Suppose that S : w1, . . . ,wm is a sequence of vectors in Fn and that

W = Span(S). Arrange the coordinates of each wr as the r-th row of an m× n matrix A. Let

A′ be the reduced echelon form of A, and use the coordinates of the r-th row of A′ to form the

vector w′
r. If A′ has k non-zero rows, then S′ : w′

1, . . . ,w
′
k is a basis for W .

Proof. To see this, notice that we can recover A from A′ by reversing the elementary row

operations required to obtain A′ from A, hence the rows of A′ are all in Span(A) and vice versa.

This shows that Span(A′) = Span(A) = W . Furthermore, it is easy to see that the non-zero

rows of A′ are linearly independent. ¤

Example 2.35. Consider the real vector space R4 and let W be the subspace spanned by

the vectors (1, 2, 3, 0), (2, 0, 1,−2), (0, 1, 0, 4), (2, 1, 1, 2). Find a basis for W .

Solution. Let

A =




1 2 3 0

2 0 1 −2

0 1 0 4

2 1 1 2


 .

Then

A ∼
R2→R2−2R1
R4→R4−2R1




1 2 3 0

0 −4 −5 −2

0 1 0 4

0 −3 −5 2


 ∼

R2↔R3




1 2 3 0

0 1 0 4

0 −4 −5 −2

0 −3 −5 2




∼
R1→R1−2R2
R3→R3+4R2
R4→R4+3R2




1 0 3 −8

0 1 0 4

0 0 −5 14

0 0 −5 14


 ∼

R4→R4−R3




1 0 3 −8

0 1 0 4

0 0 −5 14

0 0 0 0




∼
R3→(−1/5)R4




1 0 3 −8

0 1 0 4

0 0 1 −14/5

0 0 0 0


 ∼

R1→R1−3R3




1 0 0 2/5

0 1 0 0

0 0 1 −14/5

0 0 0 0


 .

Since the last matrix is reduced echelon, the sequence (1, 0, 0, 2/5), (0, 1, 0, 0), (0, 0, 1,−14/5) is

a basis of W . An alternative basis is (5, 0, 0, 2), (0, 1, 0, 0), (0, 0, 5,−14). ¤

2.3. Coordinates with respect to bases

Let V be a finite dimensional vector space over a field F and let n = dimV . Suppose

that v1, . . . ,vn form a basis of V . Then by Proposition 2.17, every vector x ∈ V has a unique

expression of the form

x = x1v1 + · · ·+ xnvn,
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where x1, . . . , xn ∈ F are the coordinates of x with respect to this basis. Of course, given the

vectors v1, . . . ,vn, each vector x is determined by the coordinate vector



x1
...

xn


 with respect

to this basis. If v′
1, . . . ,v

′
n is another basis and if the coordinates of x with respect it are

x′1, . . . , x
′
n ∈ F , then

x = x′1v
′
1 + · · ·+ x′nv

′
n,

If we write

v′
k = a1kv1 + · · ·+ ankvn

for ars ∈ F , we obtain

x = x′1
n∑

r=1

ar1vr + · · ·+ x′n
n∑

r=1

arnvr,

= (
n∑

s=1

a1sx
′
s)v1 + · · ·+ (

n∑

s=1

ansx
′
s)vn.

Thus we obtain the equation

x1v1 + · · ·+ xnvn = (
n∑

s=1

a1sx
′
s)v1 + · · ·+ (

n∑

s=1

ansx
′
s)vn.

and so for each r = 1, . . . , n we have

(2.1a) xr =
n∑

s=1

arsx
′
s.

This is more efficiently expressed in the matrix form

(2.1b)



x1
...

xn


 =



a11 · · · a1n
...

. . .
...

an1 · · · ann






x′1
...

x′n


 .

Clearly we could also express the coordinates x′r in terms of the xs. Thus implies that the

matrix [aij ] is invertible and in fact we have

(2.1c)



x′1
...

x′n


 =



a11 · · · a1n
...

. . .
...

an1 · · · ann




−1 

x1
...

xn


 .

2.4. Sums of subspaces

Let V be a vector space over a field F . In this section we will study another way to combine

subspaces of a vector space by taking a kind of sum.

Definition 2.36. Let V ′, V ′′ be two vector subspaces of V . Then their sum is the subset

V ′ + V ′′ = {v′ + v′′ : v′ ∈ V ′, v′′ ∈ V ′′}.
More generally, for subspaces V1, . . . , Vk of V ,

V1 + · · ·+ Vk = {v1 + · · ·+ vk : for j = 1, . . . , k, vj ∈ Vj}.

Notice that V1 + · · ·+ Vk contains each Vj as a subset.
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Proposition 2.37. For subspaces V1, . . . , Vk of V , the sum V1 + · · ·+ Vk is also a subspace

of V which is the smallest subspace of V containing each of the Vj as a subset.

Proof. Suppose that x,y ∈ V1+· · ·+Vk. Then for j = 1, . . . , k there are vectors xj ,yj ∈ Vj

for which

x = x1 + · · ·+ xk, y = y1 + · · ·+ yk.

We have

x+ y = (x1 + · · ·+ xk) + (y1 + · · ·+ yk)

= (x1 + y1) + · · ·+ (xk + yk).

Since each Vj is a subspace it is closed under addition, hence xj + yj ∈ Vj , therefore x + y ∈
V1 + · · ·+ Vk. Also, for s ∈ F ,

sx = s(x1 + · · ·+ xk) = sx1 + · · ·+ sxk,

and each Vj is closed under multiplication by scalars, hence sx ∈ V1 + · · · + Vk. Therefore

V1 + · · ·+ Vk is a subspace of V .

Any subspace W ⊆ V which contains each of the Vj as a subset has to also contain every

element of the form

v1 + · · ·+ vk (vj ∈ Vj)

and hence V1 + · · ·+ Vk ⊆ W . Therefore V1 + · · ·+ Vk is the smallest such subspace. ¤

Definition 2.38. Let V ′, V ′′ be two vector subspaces of V . Then V ′+V ′′ is a direct sum if

V ′ ∩ V ′′ = {0}.
More generally, for subspaces V1, . . . , Vk of V , V1+· · ·+Vk is a direct sum if for each r = 1, . . . , k,

Vr ∩ (V1 + · · ·+ Vr−1 + Vr+1 + · · ·+ Vk) = {0}.
Such direct sums are sometimes denoted V ′ ⊕ V ′′ and V1 ⊕ · · · ⊕ Vk.

Theorem 2.39. Let V ′, V ′′ be subspaces of V for which V ′ + V ′′ is a direct sum V ′ ⊕ V ′′.
Then every vector v ∈ V ′ ⊕ V ′′ has a unique expression

v = v′ + v′′ (v′ ∈ V ′, v′′ ∈ V ′′).

More generally, if V1, . . . , Vk are subspaces of V for which V1+· · ·+Vk is a direct sum V1⊕· · ·⊕Vk,

then every vector v ∈ V1 ⊕ · · · ⊕ Vk has a unique expression

v = v1 + · · ·+ vk (vj ∈ Vj , j = 1, . . . , k).

Proof. We will give the proof for the first case, the general case is more involved but

similar.

Let v ∈ V ′ ⊕ V ′′. Then certainly there are vectors v′ ∈ V ′, v′′ ∈ V ′′ for which v = v′ + v′′.
Suppose there is a second pair of vectors w′ ∈ V ′, w′′ ∈ V ′′ for which v = w′ +w′′. Then

(w′ − v′) + (w′′ − v′′) = 0,

and w′ − v′ ∈ V ′, w′′ − v′′ ∈ V ′′. But this means that

w′ − v′ = v′′ −w′′

where the left hand side is in V ′ and the right hand side is in V ′′. But the equality here means

that each of these terms is in V ′ ∩ V ′′ = {0}, hence w′ = v′ and w′′ = v′′. Thus such an

expression for v must be unique. ¤
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Proposition 2.40. Let V ′, V ′′ be subspaces of V . If these are finite dimensional, then so is

V ′ + V ′′ and

dim(V ′ + V ′′) = dimV ′ + dimV ′′ − dim(V ′ ∩ V ′′).

Proof. Notice that V ′ ∩ V ′′ is a subspace of each of V ′ and V ′′ and of V ′ + V ′′. Choose a

basis for V ′∩V ′′, say v1, . . . ,va. This extends to bases for V ′ and V ′′, say v1, . . . ,va,v
′
1, . . . ,v

′
b

and v1, . . . ,va,v
′′
1 , . . . ,v

′′
c . Every element of V ′ + V ′′ is a linear combination of the vectors

v1, . . . ,va,v
′
1, . . . ,v

′
b,v

′′
1 , . . . ,v

′′
c , we will show that they are linearly independent.

Suppose that for scalars s1, . . . , sa, s
′
1, . . . , s

′
b, s

′′
1, . . . , s

′′
c , the equation

s1v1 + · · ·+ sava + s′1v
′
1 + · · ·+ s′bv

′
b + s′′1v

′′
1 + · · ·+ s′′cv

′′
c = 0

holds. Then we have

s′′1v
′′
1 + · · ·+ s′′cv

′′
c = −(s1v1 + · · ·+ sava + s′1v

′
1 + · · ·+ s′bv

′
b) ∈ V ′,

but the left hand side is also in V ′′, hence both sides are in V ′ ∩ V ′′. By our choice of basis for

V ′ ∩ V ′′, we find that s′′1v
′′
1 + · · · + s′′cv′′

c is a linear combination of the vectors v1, . . . ,va and

since v1, . . . ,va,v
′′
1 , . . . ,v

′′
c is linearly independent the only way that can happen is if all the

coefficients are zero, hence s′′1 = · · · = s′′c = 0. A similar argument also shows that s′1 = · · · =
s′b = 0. We are left with the equation

s1v1 + · · ·+ sava = 0

which also implies that s1 = · · · = sa = 0 since the vi form a basis for V ′ ∩ V ′′.
Now we have

dim(V ′ ∩ V ′′) = a, dimV ′ = a+ b, dimV ′′ = a+ c,

and

dim(V ′ + V ′′) = a+ b+ c = dimV ′ + dimV ′′ − dim(V ′ ∩ V ′′). ¤

Definition 2.41. Let V be a vector space and W ⊆ V be a subspace. A subspace W ′ ⊆ V

for which W +W ′ = V and W ∩W ′ = {0} is called a linear complement of W in V . For such

a linear complement we have V = W ⊕W ′.

We remark that although linear complements always exist they are by no means unique!

The next result summarises the situation.

Proposition 2.42. Let W ⊆ V be subspace.

(a) There is a linear complement W ′ ⊆ V of W in V .

(b) If V is finite dimensional, then any subspace W ′′ ⊆ V satisfying the conditions

• W ∩W ′′ = {0},
• dimW ′′ = dimV − dimW

is a linear complement of W in V .

(c) Any subspace W ′′′ ⊆ V satisfying the conditions

• W +W ′′′ = V ,

• dimW ′′′ = dimV − dimW

is a linear complement of W in V .
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Proof.

(a) We show how to find a linear complement in the case where V is finite dimensional with

n = dimV . By Theorem 2.30, we know that dimW 6 dimV . So let W have a basis w1, . . . ,wr,

where r = dimW . Now by Theorem 2.25 there is an extension of this to a basis of V , say

w1, . . . ,wr,w
′
1, . . . ,w

′
n−r.

Now let W ′ = Span(w′
1, . . . ,w

′
n−r). Then by Lemma 2.6, W ′ is a subspace of V and it has

w′
1, . . . ,w

′
n−r as a basis, so dimW ′ = n− r.

Now it is clear that W +W ′ = V . Suppose that v ∈ W ∩W ′. Then there are expressions

v = s1w1 + · · ·+ srwr,

v = s′1w
′
1 + · · ·+ s′n−rw

′
n−r,

hence there is an equation

s1w1 + · · ·+ srwr + (−s′1)w
′
1 + · · ·+ (−s′n−r)w

′
n−r = 0.

But the vectors wi,w
′
j form a basis so are linearly independent. Therefore

s1 = · · · = sr = s′1 = · · · = s′n−r = 0.

This means that v = 0, hence W ∩W ′ = {0} and the sum W +W ′ is direct. So we have shown

that W ′ is a linear complement of W in V .

(b) and (c) can be verified in similar fashion. ¤

Example 2.43. Consider the vector space R2 over R. If V ′ ⊆ R2 and V ′′ ⊆ R2 are two

distinct lines through the origin, show that V ′ + V ′′ is a direct sum and that V ′ ⊕ V ′′ = R2.

Solution. As these lines are distinct and V ′ ∩ V ′′ is subspace of each of V ′ and V ′′, we
have

dim(V ′ ∩ V ′′) < dimV ′ = dimV ′′ = 1,

hence dim(V ′ ∩ V ′′) = 0. This means that V ′ ∩ V ′′ = {0} which is geometrically obvious. Now

notice that

dim(V ′ + V ′′) = dimV ′ + dimV ′′ − 0 = 1 + 1 = 2,

hence dim(V ′ + V ′′) = dimR2 and so V ′ + V ′′ = R2. ¤

Example 2.44. Consider the vector space R3 over R. If V ′ ⊆ R3 is a line through the origin

and V ′′ ⊆ R2 is a plane through the origin which does not contain V ′, show that V ′ + V ′′ is a
direct sum and that V ′ ⊕ V ′′ = R3.

Solution. V ′ ∩ V ′′ is subspace of each of V ′ and V ′′, so we have

dim(V ′ ∩ V ′′) 6 dimV ′ = 1 < 2 = dimV ′′.

In fact the inequality must be strict since otherwise V ′ ⊆ V ′′, hence dim(V ′ ∩ V ′′) = 0. This

means that V ′ ∩ V ′′ = {0} which is also geometrically obvious. Now notice that

dim(V ′ + V ′′) = dimV ′ + dimV ′′ − 0 = 1 + 2 = 3,

therefore dim(V ′ + V ′′) = dimR3 and so V ′ + V ′′ = R3. ¤
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Example 2.45. Consider the vector space R4 over R and the subspaces

V ′ = {(s+ t, s,−s,−t) : s, t ∈ R}, V ′′ = {(u, 2v,−v,−u) : u, v ∈ R}.
Show that dim(V ′ + V ′′) = 3.

Solution. V ′ is spanned by the vectors (1, 1,−1, 0), (1, 0, 0,−1), which are linearly inde-

pendent and hence form a basis. V ′′ is spanned by (1, 0, 0,−1), (0, 2,−1, 0) which are linearly

independent and hence form a basis. Thus we find that

dimV ′ = 2 = dimV ′′.

Now suppose that (w, x, y, z) ∈ V ′ ∩ V ′′. Then there are s, t, u, v ∈ R for which

(w, x, y, z) = (s+ t, s,−s,−t) = (u, 2v,−v,−u).

By comparing coefficients, this leads to the system of four linear equations

(2.2)





s + t − u = 0

s − 2v = 0

− s + v = 0

− t + u = 0





which has associated augmented matrix




1 1 −1 0 0

1 0 0 −2 0

−1 0 0 1 0

0 −1 1 0 0


 ∼

R2→R2−R1
R3→R3+R1




1 1 −1 0 0

0 −1 1 −2 0

0 1 −1 1 0

0 −1 1 0 0


 ∼

R2↔R3




1 1 −1 0 0

0 1 −1 1 0

0 −1 1 −2 0

0 −1 1 0 0




∼
R1→R1−R2
R3→R3+R2
R4→R4+R2




1 0 0 −1 0

0 1 −1 1 0

0 0 0 −1 0

0 0 0 1 0


 ∼

R3↔R4




1 0 0 −1 0

0 1 −1 1 0

0 0 0 1 0

0 0 0 −1 0




∼
R1→R1+R3
R2→R2−R3
R4→R4+R3




1 0 0 0 0

0 1 −1 0 0

0 0 0 1 0

0 0 0 0 0


 ,

where the last matrix is reduced echelon. The general solution of the system (2.2) is

s = 0, t = u, u ∈ R, v = 0.

hence we have

V ′ ∩ V ′′ = {(u, 0, 0,−u) : u ∈ R},
and this has basis (1, 0, 0,−1), hence dim(V ′ ∩ V ′′) = 1. This means that these two planes

intersect in a line in R4.

Now we see that

dim(V ′ + V ′′) = dimV ′ + dimV ′′ − dim(V ′ ∩ V ′′) = 2 + 2− 1 = 3. ¤





CHAPTER 3

Linear transformations

3.1. Functions

Before introducing linear transformations, we will review some basic ideas about functions,

including properties of composition and inverse functions which will be required later.

Let X, Y and Z be sets.

Definition 3.1. A function (or mapping) f : X −→ Y from X to Y involves a rule which

associates to each x ∈ X a unique element f(x) ∈ Y . X is called the domain of f , denoted

dom f , while Y is called the codomain of f , denoted codom f . Sometimes the rule is indicated

by writing x 7→ f(x).

Given functions f : X −→ Y and g : Y −→ Z, we can form their composition g ◦f : X −→ Z

which has the rule

g ◦ f(x) = g(f(x)).

Note the order of composition here!

X
f

//

g◦f

ÃÃ
Y

g
// Z

We often write gf for g ◦ f when no confusion will arise. If X, Y , Z are different it may not be

possible to define f ◦ g since dom f = X may not be the same as codom g = Z.

Example 3.2. For any set X, the identity function IdX −→ X has rule

x 7→ IdX(x) = x.

Example 3.3. Let X = Y = R. Then the following rules define functions R −→ R:

x 7→ x+ 1, x 7→ x2, x 7→ 1

x2 + 1
, x 7→ sinx, x 7→ e5x

3
.

Example 3.4. Let X = Y = R+, the set of all positive real numbers. Then the following

rules define two functions R+ −→ R:

x 7→ √
x, x 7→ −√

x.

Example 3.5. Let X and Y be sets and suppose that w ∈ Y is an element. The constant

function cw : X −→ Y taking value w has the rule

x 7→ cw(x) = w.

For example, if X = Y = R then c0 is the function which returns the value c0(x) = 0 for every

real number x ∈ R.

Definition 3.6. A function f : X −→ Y is

• injective (or an injection or one-to-one) if for x1, x2 ∈ X,

29
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f(x1) = f(x2) implies x1 = x2,

• surjective (or a surjection or onto) if for every y ∈ Y there is an x ∈ X for which

y = f(x),

• bijective (or injective or a one-to-one correspondence) if it is both injective and surjec-

tive.

We will use the following basic fact.

Proposition 3.7. The function f : X −→ Y is a bijection if and only if there is an inverse

function Y −→ X which is the unique function h : Y −→ X satisfying

h ◦ f = IdX , f ◦ h = IdY .

If such an inverse exists it is usual to denote it by f−1 : Y −→ X, and then we have

f−1 ◦ f = IdX , f ◦ f−1 = IdY .

Later we will see examples of all these notions in the context of vector spaces.

3.2. Linear transformations

In this section, let F be a field of scalars.

Definition 3.8. Let V and W be two vector spaces over F and let f : V −→ W be a

function. Then f is called a linear transformation or linear mapping if it satisfies the two

conditions

• for all vectors v1,v2 ∈ V ,

f(v1 + v2) = f(v1) + f(v2),

• for all vectors v ∈ V and scalars t ∈ F ,

f(tv) = tf(v).

These two conditions together are equivalent to the single condition

• for all vectors v1,v2 ∈ V , and scalars t1, t2 ∈ F ,

f(t1v1 + t2v1) = t1f(v1) + t2f(v1).

Remark 3.9. For a linear transformation f : V −→ W , we always have f(0) = 0, where

the left hand 0 means the zero vector in V and the right hand 0 means the zero vector in W .

The next example introduces an important kind of linear transformation associated with a

matrix.

Example 3.10. Let A ∈ Mm×n be an m× n matrix. Define fA : Fn −→ Fm by the rule

fA(x) = Ax.

Then for s, t ∈ F and u,v ∈ Fn,

fA(su+ tv) = A(su+ tv) = sAu+ tAv = sfA(u) + tfA(v).

So fA is a linear transformation.

Observe that the standard basis vectors e1, . . . , en (viewed as column vectors) satisfy

fA(ej) = j-th column of A,



3.2. LINEAR TRANSFORMATIONS 31

so

A =
[
fA(e1) · · · fA(en)

]
=

[
Ae1 · · · Aen

]
.

Now it easily follows that fA(e1), . . . , fA(en) spans Im fA since every element of the latter is a

linear combination of this sequence.

Theorem 3.11. Let f : V −→ W and g : U −→ V be two linear transformations between

vector spaces over F . Then the composition f ◦ g : U −→ W is also a linear transformation.

Proof. For s1, s2 ∈ F and u1,u2 ∈ V , we have to show that

f ◦ g(s1u1 + s2u2) = s1f ◦ g(u1) + s2f ◦ g(u2).

Using the fact that both f and g are linear transformations we have

f ◦ g(s1v1 + s2v2) = f (s1g(u1) + s2g(u2))

= s1f (g(u1)) + s2f (g(u2))

= s1f ◦ g(u1) + s2f ◦ g(u2),

as required. ¤

Theorem 3.12. Let V and W be vector spaces over F . Suppose that f, g : V −→ W are

linear transformations and s, t ∈ F . Then the function

sf + tg : V −→ W ; (sf + tg)(v) = sf(v) + tg(v)

is a linear transformation.

Definition 3.13. Let f : V −→ W be a linear transformation.

• The kernel (or nullspace) of f is the following subset of V :

Ker f = {v ∈ V : f(v) = 0} ⊆ V.

• The image (or range) of f is the following subset of W :

Im f = {w ∈ W : there is an v ∈ V s.t. w = f(v)} ⊆ W.

Theorem 3.14. Let f : V −→ W be a linear transformation. Then

(a) Ker f is a subspace of V ,

(b) Im f is a subspace of W .

Proof.

(a) Let s1, s2 ∈ F and v1,v2 ∈ Ker f . We must show that s1v1 + s2v2 ∈ Ker f , i.e., that

f(s1v1 + s2v2) = 0. Since f is a linear transformation and f(v1) = 0 = f(v2), we have

f(s1v1 + s2v2) = s1f(v1) + s2f(v2)

= s10+ s20 = 0,

hence f(s1v1 + s2v2) ∈ Ker f . Therefore Ker f is a subspace of V .

Now suppose that t1, t2 ∈ F and w1,w2 ∈ Im f . We must show that t1w1 + t2w2 ∈ Im f ,

i.e., that t1w1+ t2w2 = f(v) for some v ∈ V . Since w1,w2 ∈ Im f , there are vectors v1,v2 ∈ V

for which

f(v1) = w1, f(v2) = w2.
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As f is a linear transformation,

t1w1 + t2w2 = t1f(v1) + t2f(v2)

= f(t1v1 + t2v2),

so we can take v = t1v1 + t2v2 to get

t1w1 + t2w2 = f(v).

Hence Im f is a subspace of W . ¤

For linear transformations the following result holds, where we make use of notions intro-

duced in Section 3.1.

Theorem 3.15. Let f : V −→ W be a linear transformation.

(a) f is injective if and only if Ker f = {0}.
(b) f is surjective if and only if Im f = W .

(c) f is bijective if and only if Ker f = {0} and Im f = W .

Proof.

(a) Notice that f(0) = 0. Hence if f is injective then f(v) = 0 implies v = 0, i.e., Ker f = {0}.
We need to show the converse, i.e., if Ker f = {0} then f is injective.

So suppose that Ker f = {0}, v1,v2 ∈ V , and f(v1) = f(v2). Since f is a linear transfor-

mation,

f(v1 − v2) = f(v1 + (−1)v2)

= f(v1) + (−1)f(v2)

= f(v1)− f(v2)

= 0,

hence f(v1 − v2) = 0 and therefore v1 − v2 = 0, i.e., v1 = v2. This shows that f is injective.

(b) This is immediate from the definition of surjectivity.

(c) This comes by combining (a) and (b). ¤

Theorem 3.16. Let f : V −→ W be a bijective linear transformation. Then the inverse

function f−1 : W −→ V is a linear transformation.

Proof. Let t1, t2 ∈ F and w1,w2 ∈ W . We must show that

f−1(t1w1 + t2w2) = t1f
−1(w1) + t2f

−1(w2).
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The following calculation does this:

f
(
f−1(t1w1 + t2w2)− t1f

−1(w1) + t2f
−1(w2)

)
=f ◦ f−1(t1w1 + t2w2)

− f(t1f
−1(w1) + t2f

−1(w2))

= IdW (t1w1 + t2w2)

− f(t1f
−1(w1) + t2f

−1(w2))

=(t1w1 + t2w2)

− (t1f ◦ f−1(w1) + t2f ◦ f−1(w2))

=(t1w1 + t2w2)

− (t1 IdW (w1) + t2 IdW (w2))

=(t1w1 + t2w2)− (t1w1 + t2w2) = 0.

Since f is injective this means that

f−1(t1w1 + t2w2)− (t1f
−1(w1) + t2f

−1(w2)) = 0,

giving the desired formula. ¤

Definition 3.17. A linear transformation f : V −→ W which is a bijective function is called

an isomorphism from V to W , and these are said to be isomorphic vector spaces.

Notice that for an isomorphism f : V −→ W , the inverse f−1 : W −→ V is also an isomor-

phism.

Definition 3.18. Let f : V −→ W be a linear transformation. Then the rank of f is

rank f = dim Im f,

and the nullity of f is

null f = dimKer f,

whenever these are finite.

Theorem 3.19 (The rank-nullity theorem). Let f : V −→ W be a linear transformation

with V finite dimensional. Then

dimV = rank f + null f.

Proof. Start by choosing a basis for Ker f , say u1, . . . ,uk. Notice that k = null f . By

Theorem 2.25, this can be extended to a basis of V , say u1, . . . ,uk,uk+1, . . . ,un, where n =

dimV . Now for s1, . . . , sn ∈ F ,

f(s1u1 + · · ·+ snun) = s1f(u1) + · · ·+ snf(un)

= s10+ · · ·+ sk0+ sk+1f(uk+1) + · · ·+ snf(un)

= sk+1f(uk+1) + · · ·+ snf(un).

This shows that Im f is spanned by the vectors f(uk+1), . . . , f(un). In fact, this last expression

is only zero when s1u1 + · · ·+ snun lies in Ker f which can only happen if sk+1 = · · · = sn = 0.

So the vectors f(uk+1), . . . , f(un) are linearly independent and therefore form a basis for Im f .

Thus rank f = n− k and the result follows. ¤

We can also reformulate the results of Theorem 3.15.
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Theorem 3.20. Let f : V −→ W be a linear transformation.

(a) f is injective if and only if null f = 0.

(b) f is surjective if and only if rank f = dimW .

(c) f is bijective if and only if f = 0 and rank f = dimW .

Corollary 3.21. Let f : V −→ W be a linear transformation with V and W finite dimen-

sional vector spaces. The following hold:

(a) if f is an injection, then dimF V 6 dimF W ;

(b) if f is a surjection, then dimF V > dimF W ;

(c) if f is a bijection, then dimF V = dimF W .

Proof. This makes use of the rank-nullity Theorem 3.19 and Theorem 3.20.

(a) Since Im f is a subspace of W , we have dim Im f 6 dimW , hence if f is injective,

dimV = rank f 6 dimW.

(b) This time, if f is surjective we have

dimV > rank f = dimW.

Combining (a) and (b) gives (c). ¤

Example 3.22. Let D(R) be the vector space of differentiable real functions considered in

Example 1.11.

(a) For n > 1, define the function

Dn : D(R) −→ D(R); Dn(f) =
dnf

dxn
.

Show that this is a linear transformation and that

Dn = D ◦Dn−1 = Dn−1 ◦D
and so Dn is the n-fold composition D ◦ · · · ◦D. Identify the kernel and image of Dn.

(b) More generally, for real numbers a0, a1, . . . , an, define the function

a0 + a1D + · · ·+ anD
n : D(R) −→ D(R);

(a0 + a1D + · · ·+ anD
n)(f) = a0f + a1D(f) + · · ·+ anD

n(f),

and show that this is a linear transformation and identify its kernel and image.

Solution.

(a) When n = 1, D has the effect of differentiation on functions. For scalars s, t and functions

f, g in D(R),

D(sf + tg) =
d(sf + tg)

dx
= s

df

dx
+ t

dg

dx
= sD(f) + tD(g).

Hence D is a linear transformation. The formulae for Dn are clear and compositions of linear

transformations are also linear transformations by Theorem 3.11.

To understand the kernel of Dn, notice that f ∈ KerDn if and only if Dn(f) = 0, so we are

looking for the general solution of the differential equation

dnf

dxn
= 0

which has general solution

f(x) = c0 + c1x+ · · · cn−1x
n−1 (c0, . . . , cn−1 ∈ R).
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To find the image of Dn, first notice that for any real function g we have

D

(∫ x

0
g(t) dt

)
=

d

dx

∫ x

0
g(t) dt = g(x).

This shows that ImD = D(R), i.e., D is surjective. More generally, we find that ImDn = D(R).

(b) This uses Theorem 3.12. The point is that

a0 + a1D + · · ·+ anD
n = a0 IdD(R)+a1D + · · · anDn.

We have f ∈ Ker(a0 + a1D + · · ·+ anD
n) if and only if

a0f + a1
df

dx
+ · · ·+ an

dnf

dxn
= 0,

so the kernel is the same as the set of solutions of the latter differential equation. Again we find

that this linear transformation is surjective and we leave this as an exercise. ¤

Example 3.23. Let F be a field of scalars. For n > 1, consider the vector space Mn(F ).

Define the trace function tr : Mn(F ) −→ F by

tr([aij ]) =
n∑

r=1

arr = a11 + · · ·+ ann.

Show that tr is linear transformation and find bases for its kernel and image.

Solution. For [aij ], [bij ] ∈ Mn(F ) and s, t ∈ F we have

tr(s[aij ] + t[bij ]) = tr([saij + tbij ]) =
n∑

r=1

(sarr + tbrr)

=

n∑

r=1

sarr +

n∑

r=1

tbrr

= s
n∑

r=1

arr + t
n∑

r=1

brr

= s tr([aij ]) + t tr([bij ]),

hence tr is a linear transformation.

Notice that dimF Mn(F ) = n2 and dimF F = 1. Also, for t ∈ F ,

tr



t 0 · · · 0
...

...
. . .

...

0 0 · · · 0


 = t.

This shows that Im tr = F , i.e., tr is surjective and Im tr = F has basis 1.

By the rank-nullity Theorem 3.19,

null tr = dimF Ker tr = n2 − 1.

Now the matrices Ers (r, s = 1, . . . , n− 1, r 6= s) and Err −E(r+1)(r+1) (r = 1, . . . , n− 1) lie in

Ker tr and are linearly independent. There are

n(n− 1) + (n− 1) = (n+ 1)(n− 1) = n2 − 1

of these, so they form a basis of Ker tr. ¤
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Example 3.24. Let F be a field and let m,n > 1. Consider the transpose function

(−)T : Mm×n(F ) −→ Mn×m(F )

defined by

[aij ]
T = [aji],

i.e., the (i, j)-th entry of [aij ]
T is the (j, i)-th entry of [aij ].

Show that (−)T is a linear transformation which is an isomorphism. What is its inverse?

Solution. For [aij ], [bij ] ∈ Mm×n(F ),

([aij ] + [bij ])
T = [aij + bij ]

T = [aji + bji] = [aji] + [bji] = [aij ]
T + [bij ]

T ,

and if s ∈ F ,

(s[aij ])
T = [saij ]

T = [saji] = s[aji] = s[aji]
T .

Thus (−)T is a linear transformation.

If [aij ] ∈ Ker(−)T then [aji] = On×m (the n×m zero matrix), hence aij = 0 for i = 1, . . . ,m

and j = 1, . . . , n and so [aji] = Om×n. Thus null(−)T = 0 and by the rank-nullity theorem,

rank(−)T = dimMm×n(F ) = mn = dimMn×m(F ).

This shows that Im(−)T = Mn×m(F ). Hence (−)T is an isomorphism. Its inverse is

(−)T : Mn×m(F ) −→ Mm×n(F ). ¤

Similar arguments apply to the next example.

Example 3.25. Let m,n > 1 and consider the Hermitian conjugate function

(−)∗ : Mm×n(C) −→ Mn×m(C)

defined by

[aij ]
∗ = [aji],

i.e., the (i, j)-th entry [aij ]
∗ is the complex conjugate of the (j, i)-th entry of [aij ].

If Mm×n(C) and Mn×m(C) are viewed as real vector spaces, then (−)∗ is a linear transfor-

mation which is an isomorphism.

There are some useful rules for dealing with transpose and Hermitian conjugates of products

of matrices.

Proposition 3.26 (Reversal rules).

(a) If F is any field, the transpose operation satisfies

(AB)T = BTAT

for all matrices A ∈ M`×m(F ) and B ∈ Mm×n(F ).

(b) For all complex matrices P ∈ M`×m(C) and Q ∈ Mm×n(C),

(PQ)∗ = Q∗P ∗.
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Proof. (a) Writing A = [aij ] and B = [bij ], we obtain

(AB)T = ([aij ][bij ])
T =

[
m∑

r=1

airbrj

]T

=

[
m∑

r=1

ajrbri

]

=

[
m∑

r=1

briajr

]

= [bji][aji] = [bij ]
T [aij ]

T = BTAT .

(b) is proved in a similar way but with the appearance of complex conjugates in the formulae. ¤

Definition 3.27. For an arbitrary field F , an matrix A ∈ Mn(F ) is called

• symmetric if AT = A,

• skew-symmetric if AT = −A.

A complex matrix B ∈ Mn(C) is called
• Hermitian if B∗ = A,

• skew-Hermitian if B∗ = −A.

3.3. Working with bases and coordinates

When performing calculations with a linear transformation it is often useful to use coor-

dinates with respect to bases of the domain and codomain. In fact, this reduces every linear

transformation to one associated to a matrix as described in Example 3.10.

Lemma 3.28. Let f, g : V −→ W be linear transformations and let S : v1, . . . ,vn be a basis

for V . Then f = g if and only if the values of f and g agree on the elements of S. Hence a

linear transformation is completely determined by its values on the elements of a basis for its

domain.

Proof. Every element v ∈ V can be uniquely expressed as a linear combination

v = s1v1 + · · ·+ snvn

Now

f(v) = f(s1v1 + · · ·+ snvn)

= s1f(v1) + · · ·+ snf(vn)

and similarly

g(v) = g(s1v1 + · · ·+ snvn)

= s1g(v1) + · · ·+ sng(vn).

So the functions f and g agree on v if and only if for each i, f(vi) = g(vi). We conclude that

f and g agree on V if and only if they agree on S. ¤

Here is another useful result involving bases.

Lemma 3.29. Let V and W be finite dimensional vector spaces over F , and let S : v1, . . . ,vn

be a basis for V . Suppose that f : V −→ W is a linear transformation. Then

(a) if f(v1), . . . , f(vn) is linearly independent in W , then f is an injection;

(b) if f(v1), . . . , f(vn) spans W , then f is surjective;

(b) if f(v1), . . . , f(vn) forms a basis for W , then f is bijective.
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Proof. (a) The equation

f(s1v1 + · · ·+ snvn) = 0

is equivalent to

s1f(v1) + · · ·+ snf(vn) = 0

and so if the vectors f(v1), . . . , f(vn) are linearly independent, then this equation has unique

solution s1 = · · · = sn = 0. This shows that Ker f = {0} and hence by Theorem 3.15 we see

that f is injective.

(b) Im f ⊆ W contains every vector of the form

f(t1v1 + · · ·+ tnvn) = t1f(v1) + · · ·+ tnf(vn) (t1, . . . , tn ∈ F ).

If the vectors f(v1), . . . , f(vn) span W , this shows that W ⊆ Im f and so f is surjective.

(c) This follows by combining (a) and (b). ¤

Theorem 3.30. Let S : v1, . . . ,vn be a basis for the vector space V . Let W be a second

vector space and let T : w1, . . . ,wn be any sequence of vectors in W . Then there is a unique

linear transformation f : V −→ W satisfying

f(vi) = wk (i = 1, . . . , n).

Proof. For every vector v ∈ V , there is a unique expression

v = s1v1 + · · ·+ skvk,

where si ∈ F . Then we can set

f(v) = s1w1 + · · ·+ skwk

since the right hand side is clearly well defined in terms of v. In particular, if v = vi, then

f(vi) = wi and that f is a linear transformation f : V −→ W . Uniqueness follows from

Lemma 3.28. ¤

A useful consequence of this result is the following.

Theorem 3.31. Suppose that the vector space V is a direct sum V = V1⊕V2 of two subspaces

and let f1 : V1 −→ W and f2 : V2 −→ W be two linear transformations. Then there is a unique

linear transformation f : V −→ W extending f1, f2, i.e., satisfying

f(u) =




f1(u) if u ∈ V1,

f2(u) if u ∈ V2.

Proof. Use bases of V1 and V2 to form a basis of V , then use Theorem 3.30. ¤

Here is another useful result.

Theorem 3.32. Let V and W be finite dimensional vector spaces over F with n = dimF V

and m = dimF W . Suppose that S : v1, . . . ,vn and T : w1, . . . ,wm are bases for V and W

respectively. Then there is a unique transformation f : V −→ W with the following properties:

(a) if n 6 m then

f(vj) = wj for j = 1, . . . , n;

(b) if n > m then

f(vj) =




wj when j = 1, . . . ,m,

0 when j > m.
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Furthermore, f also satisfies:

(c) if n 6 m then f is injective;

(d) if n > m then f is surjective;

(e) if m = n then f is an isomorphism.

Proof. (a) Starting with the sequence w1, . . . ,wn, we can apply Theorem 3.30 to show

that there is a unique linear transformation f : V −→ W with the stated properties.

(b) Starting with the sequence w1, . . . ,wm,0, . . . ,0 of length n, we can apply Theorem 3.30 to

show that there is a unique linear transformation f : V −→ W with the stated properties.

(c), (d) and (e) now follow from Lemma 3.29. ¤

The next result provides a convenient way to decide if two vector spaces are isomorphic:

simply show that they have the same dimension.

Theorem 3.33. Let V and W be finite dimensional vector spaces over the field F . Then

there is an isomorphism V −→ W if and only if dimF V = dimF W .

Proof. If there is an isomorphism f : V −→ W , then dimF V = dimF W by Corol-

lary 3.21(c).

For the converse, if dimF V = dimF W then by Theorem 3.32(e) there is an isomorphism

V −→ W . ¤

Now we will see how to make use of bases for the domain and codomain to work with a

linear transformation by using matrices.

Let V and W be two finite dimensional vector spaces. Let S : v1, . . . ,vn and T : w1, . . . ,wm

be bases for V and W respectively. Suppose that f : V −→ W is a linear transformation. Then

there are unique scalars tij ∈ F (i = 1, . . . ,m, j = 1, . . . , n) for which

(3.1) f(vj) = t1jw1 + · · ·+ tmjwm.

We can form the m× n matrix

(3.2) T [f ]S = [tij ] =



t11 · · · t1n
...

. . .
...

tm1 · · · tmn


 .

Remark 3.34.

(a) Notice that this matrix depends on the bases S and T as well as f .

(b) The coefficients are easily found: the j-th column is made up from the coefficients that

occur when expressing f(vj) in terms of the wi.

In the next result we will also assume that there are bases S′ : v′
1, . . . ,v

′
n and T ′ : w′

1, . . . ,w
′
m

for V and W respectively, for which

v′
j = a1jv1 + · · ·+ anjvn =

n∑

i=1

aijvi (j = 1, . . . , n),

w′
k = b1kv1 + · · ·+ bmkwm =

n∑

i=1

bikwi (k = 1, . . . ,m).
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Working with these bases we obtain the matrix

T ′ [f ]S′ = [t′ij ] =



t′11 · · · t′1n
...

. . .
...

t′m1 · · · t′mn


 .

We will set

A = [aij ] =



a11 · · · a1n
...

. . .
...

an1 · · · ann


 , B = [bij ] =



b11 · · · b1m
...

. . .
...

bm1 · · · bmm


 .

Theorem 3.35.

(a) Let x ∈ V have coordinates x1, . . . , xn with respect to the basis S : v1, . . . ,vn of V and let

f(x) ∈ W have coordinates y1, . . . , ym with respect to the basis T : w1, . . . ,wm of W . Then

(3.3a)



y1
...

ym


 = T [f ]S



x1
...

xn


 =



t11 · · · t1n
...

. . .
...

tm1 · · · tmn






x1
...

xn


 .

(b) The matrices T [f ]S and T ′ [f ]S′ are related by the formula

(3.3b) T ′ [f ]S′ = B−1
T [f ]SA.

Proof. These follow from calculations with the above formulae. ¤

The formulae of (3.3), allow us to reduce calculations to ones with coordinates and matrices.

Example 3.36. Consider the linear transformation

f : R3 −→ R2; f(x, y, z) = (2x− 3y + 7z, x− z)

between the real vector spaces R3 and R2.

(a) Write down the matrix of f with respect to the standard bases of R3 and R2.

(b) Determine the matrix T [f ]S , where S and T are the bases

S : (1, 0, 1), (0, 1, 1), (0, 0, 1), T : (3, 1), (2, 1).

Solution.

(a) In terms of the standard basis vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 0), (0, 1) we have

f(1, 0, 0) = (2, 1) = 2(1, 0) + 1(0, 1),

f(0, 1, 0) = (−3, 0) = −3(1, 0) + 0(0, 1),

f(0, 0, 1) = (7,−1) = 7(1, 0) + (−1)(0, 1),

hence the matrix is

[
2 −3 7

1 0 −1

]
.

(b) We have

(1, 0, 1) = 1(1, 0, 0) + 0(0, 1, 0) + 1(0, 0, 1),

(0, 1, 1) = 0(1, 0, 0) + 1(0, 1, 0) + 1(0, 0, 1),

(0, 0, 1) = 0(1, 0, 0) + 0(0, 1, 0) + 1(0, 0, 1),
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so we take

A =



1 0 0

0 1 0

1 1 1


 .

We also have

(3, 1) = 3(1, 0) + 1(0, 1), (2, 1) = 2(1, 0) + 1(0, 1),

and so we take

B =

[
3 2

1 1

]
.

The inverse of B is

B−1 =
1

3− 2

[
1 −2

−1 3

]
=

[
1 −2

−1 3

]
,

so we have

T [f ]S = B−1

[
2 −3 7

1 0 −1

]
A

=

[
1 −2

−1 3

][
2 −3 7

1 0 −1

]

1 0 0

0 1 0

1 1 1




=

[
9 6 9

−9 −7 −10

]
. ¤

Theorem 3.37. Suppose that f : V −→ W and g : U −→ V are linear transformations and

that R,S, T are bases for U, V,W respectively. Then the matrices T [f ]S, S [g]R, T [f ◦ g]R are

related by the matrix equation

T [f ◦ g]R = T [f ]SS [g]R.

Proof. This follows by a calculation using the formula (3.1). Notice that the right hand

matrix product does make sense because T [f ]S is dimW × dimV , S [g]R and is dimV × dimU ,

while T [f ◦ g]R is dimW × dimU . ¤

3.4. Application to matrices and systems of linear equations

Let F be a field and consider an m × n matrix A ∈ Mm×n(F ). Recall that by performing

a suitable sequence of elementary row operations we may obtain a reduced echelon matrix A′

which is row equivalent to A, i.e., A′ ∼ A. This can be used to solve a linear system of the form

Ax = b.

It is also possible to perform elementary column operations on A, or equivalently, to form

AT then perform elementary row operations until we get a reduced echelon matrix A′′, then
transpose back to get another column reduced echelon matrix (A′′)T .

Definition 3.38. The number of non-zero rows in A′ is called the row rank of A. The

number of non-zero columns in (A′′)T is called the column rank of A.

Example 3.39. Taking F = R, find the row and column ranks of the matrix

A =



1 2

0 3

5 1


 .
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Solution. For the row rank we have

A =



1 2

0 3

5 1


 ∼



1 2

0 3

0 −9


 ∼



1 2

0 1

0 −9


 ∼



1 0

0 1

0 0


 = A′,

so the row rank is 2.

For the column rank,

AT =

[
1 0 5

2 3 1

]
∼

[
1 0 5

0 3 −9

]
∼

[
1 0 5

0 1 −3

]
= A′′,

which gives

(A′′)T =



1 0

0 1

5 −3




and the column rank is 2. ¤

Theorem 3.40. Let A ∈ Mm×n(F ). Then

row rank of A = column rank of A.

Proof of Theorem 3.40. We will make use of ideas from Example 3.10. Recall the linear

transformation fA : Fn −→ Fm determined by

fA(x) = Ax (x ∈ Fn).

First we identify the value of the row rank of A in other terms. Let r be the row rank of A.

Then

Ker fA = {x ∈ Fn : Ax = 0}
is the set of solution of the associated system of homogeneous linear equations. Recall that

once the reduced echelon matrix A′ has been found, the general solution can be expressed in

terms of n − r basic solutions each obtained by setting one of the parameters equal to 1 and

the rest equal to 0. These basic solutions form a spanning sequence for Ker fA which is linearly

independent and hence is a basis for Ker fA. So we have

(3.4) row rank of A = r = n− dimKer fA.

On the other hand, if c is the column rank of A, we find that the columns of (A′′)T are a

spanning sequence for the subspace of Fm spanned by the columns of A, and in fact, they are

linearly independent.

As the columns of A span Im fA,

(3.5) column rank of A = c = dim Im fA.

But now we can use the rank-nullity Theorem 3.19 to deduce that

n = dimKer fA + dim Im fA = (n− r) + c = n+ (c− r),

giving c = r as claimed. ¤

Remark 3.41. In this proof we saw that the columns of A span Im fA and also how to find

a basis for Ker fA by the method of solution of linear systems using elementary row operations.
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Definition 3.42. The rank of A is the number

rankA = rank fA = dim Im fA = column rank of A = row rank of A,

where rank fA was defined in Definition 3.18. It agrees with the number of non-zero rows in the

reduced echelon matrix similar to A.

The kernel of A is KerA = Ker fA and the image of A is ImA = Im fA.

3.5. Geometric linear transformations

When considering a linear transformation f : Rn −→ Rn on the real vector space Rn it is

often important or useful to understand its geometric content.

Example 3.43. For θ ∈ R, consider the linear transformation ρθ : R2 −→ R2 given by

ρθ(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ).

Investigate the geometric effect of ρθ on the plane.

Solution. The effect on the standard basis vectors is

ρθ(1, 0) = (cos θ, sin θ), ρθ(0, 1) = (− sin θ, cos θ).

Using the dot product of vectors it is possible to check that the angle between ρθ(x, y) and (x, y)

is always θ if (x, y) 6= (0, 0), and that the lengths of ρθ(x, y) and (x, y) are equal. So ρθ has the

effect of rotating the plane about the origin through the angle θ measured in the anti-clockwise

direction.

Notice that the matrix of ρθ with respect to the standard basis of R2 is the rotation matrix
[
cos θ − sin θ

sin θ cos θ

]
. ¤

Example 3.44. For θ ∈ R, consider the linear transformation σθ : R2 −→ R2 given by

σθ(x, y) = (x cos θ + y sin θ, x sin θ − y cos θ).

Investigate the geometric effect of σθ on the plane.

Solution. The effect on the standard basis vectors is

σθ(1, 0) = (cos θ, sin θ), σθ(0, 1) = (sin θ,− cos θ).

The angle between every pair of vectors is preserved by σθ, as is the length of a vector. We also

find that

σθ(cos(θ/2), sin(θ/2)) = (cos(θ/2), sin(θ/2)),

σθ(− sin(θ/2), cos(θ/2)) = (sin(θ/2),− cos(θ/2)) = −(− sin(θ/2), cos(θ/2)),

from which it follows that σθ has the effect of reflecting the plane in the line through the origin

and parallel to (cos(θ/2), sin(θ/2)).

Notice that the matrix of σθ with respect to the standard basis of R2 is the reflection matrix
[
cos θ sin θ

sin θ − cos θ

]
. ¤
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Example 3.45. Let S =

[
1 t

0 1

]
and let fS : R2 −→ R2 be the real linear transformation

given by

fS(x) = Sx.

Then fS has the geometric effect of a shearing parallel to the x-axis.

Solution. This can be seen by plotting the effect of fS on points. For example, points on

the x-axis are fixed by fS , while points on the y-axis get moved parallel to the x-axis into the

line of slope t. ¤

Example 3.46. Let D =

[
d 0

0 1

]
where d > 0 and let fD : R2 −→ R2 be the real linear

transformation defined by

fD(x) = Dx.

Then fD has the geometric effect of a dilation parallel to the x-axis.

Solution. When applying fD, vectors along the x-axis get dilated by a factor d, while

those on the y-axis are unchanged. ¤

Example 3.47. Let V a finite dimensional vector space over a field F . Suppose that

V = V ′ ⊕ V ′′ is the direct sum of two subspaces V ′, V ′′ (see Definition 2.38). Then there

is a linear transformation pV ′,V ′′ : V −→ V given by

pV ′,V ′′(v′ + v′′) = v′ (v′ ∈ V ′, v′′ ∈ V ′′).

Then Ker pV ′,V ′′ = V ′′ and Im pV ′,V ′′ = V ′.

pV ′,V ′′ is sometimes called the projection of V onto V ′ with kernel V ′′. The case where V ′′

is a line (i.e., dimV ′′ = 1) is particularly important.

Example 3.48. Find a formula for the projection of R3 onto the plane P through the origin

and perpendicular to (1, 0, 1) with kernel equal to the line L spanned by (1, 0, 1).

Solution. Let this projection be p : R3 −→ R3. Then every vector x ∈ R3 can be expressed

as

x =
(
x− [(1/

√
2, 0, 1/

√
2) · x](1/

√
2, 0, 1/

√
2)
)
+ [(1/

√
2, 0, 1/

√
2) · x](1/

√
2, 0, 1/

√
2),

where

x− [(1/
√
2, 0, 1/

√
2) · x](1/

√
2, 0, 1/

√
2) ∈ P

and

[(1/
√
2, 0, 1/

√
2) · x](1/

√
2, 0, 1/

√
2) ∈ L.

This corresponds to the direct sum decomposition R3 = P ⊕ L.

The projection p is given by

p(x) = x− [(1/
√
2, 0, 1/

√
2) · x](1/

√
2, 0, 1/

√
2). ¤



CHAPTER 4

Determinants

For 2× 2 and 3× 3 matrices determinants are defined by the formulae

det

[
a11 a12

a21 a22

]
=

∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣ = a11a22 − a12a21(4.1)

det



a11 a12 a13

a21 a22 a23

a31 a32 a33


 =

∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
= a11

∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣− a12

∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣+ a13

∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣ .(4.2)

We will introduce determinants for all n × n matrices over any field of scalars and these will

have properties analogous to that of (4.2) which allows the calculation of 3 × 3 determinants

from 2× 2 ones.

Definition 4.1. For the n×nmatrix A = [aij ] with entries in F , for each pair r, s = 1, . . . , n,

the cofactor matrix Ars is the (n − 1) × (n − 1) matrix obtained by deleting the r-th row and

s-th column of A.

Warning. When working with the determinant of a matrix [aij ] we will often write |A|
for det(A) and display it as an array with vertical lines rather than square brackets as in (4.1)

and (4.2). But beware, the two expressions


a11 a12 a13

a21 a22 a23

a31 a32 a33




and ∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
= det



a11 a12 a13

a21 a22 a23

a31 a32 a33




are very different things: the first is a matrix, whereas the second is a scalar. They should

not be confused!

4.1. Definition and properties of determinants

Let F be a field of scalars.

Theorem 4.2. For each n > 1, and every n × n matrix A = [aij ] with entries in F , there

is a uniquely determined scalar

detA = det(A) = |A| ∈ F

which satisfies the following properties.

(A) For the n× n identity matrix In,

det(In) = 1.

45
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(B) If A,B are two n× n matrices then

det(AB) = det(A) det(B).

(C) Let A be an n× n matrix. Then we have

Expansion along the r-th row:

det(A) =

n∑

j=1

(−1)r+jarj det(A
rj)

for any r = 1, . . . , n.

Expansion along the s-th column:

det(A) =
n∑

i=1

(−1)s+iais det(A
is)

for any s = 1, . . . , n. The signs in these expansions can be obtained from the pattern
∣∣∣∣∣∣∣∣∣∣

+ − + − · · ·
− + − + · · ·
+ − + − · · ·
...

. . .
...

∣∣∣∣∣∣∣∣∣∣

(D) For an n× n matrix A,

det(AT ) = det(A).

Notice that the formula

det(A) =
n∑

j=1

(−1)j−1a1j det(A
1j)

from (C) is a direct generalisation of (4.2).

Here are some important results on determinants of invertible matrices that follow from the

above properties.

Proposition 4.3. Let A be an invertible n× n matrix.

(i) det(A) 6= 0 and

det(A−1) = det(A)−1 =
1

det(A)
.

(ii) If B is any n× n matrix then

det(ABA−1) = det(B).

Proof.

(i) By (B),

det(In) = det(AA−1) = det(A) det(A−1),

hence using (A) we find that

det(A) det(A−1) = 1,

so det(A−1) 6= 0 and

det(A−1) = det(A)−1 =
1

det(A)
.
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(ii) By (B) and (i),

det(ABA−1) = det(AB) det(A−1)

= det(A) det(B) det(A−1)

= det(B) det(A) det(A−1) = det(B). ¤

Let us relate this to elementary row operations and elementary matrices, whose basic prop-

erties we will assume. Suppose that R is an elementary row operation and E(R) is the corre-

sponding elementary matrix. Then the matrix A′ obtained from A by applying R satisfies

A′ = E(R)A,

hence

(4.3) det(A′) = det(E(R)A) = det(E(R)) det(A).

Proposition 4.4. If A′ = E(R)A is the result of applying the elementary row operation R

to the n× n matrix A, then

det(A′) =





−det(A) if R = (Rr ↔ Rs),

λdet(A) if R = (Rr → λRr),

det(A) if R = (Rr → Rr + λRs).

In particular,

det(E(R)) =





−1 if R = (Rr ↔ Rs),

λ if R = (Rr → λRr),

1 if R = (Rr → Rr + λRs).

Proof. If R = Rr ↔ Rs, then it is possible to prove by induction on the size n that

det(E(Rr ↔ Rs)) = −1.

The initial case is n = 2 where

det(E(R1 ↔ R2)) =

∣∣∣∣∣
0 1

1 0

∣∣∣∣∣ = −1.

If R = Rr → λRr for λ 6= 0, then expanding along the r-th row gives

det(E(Rr → λRr)) = λdet(In) = λ.

Finally, if R = Rr → Rr + λRs with r 6= s, then expanding along the r-th row gives

det(E(Rr → Rr + λRs)) = det(In−1) + λdet(Irsn ) = 1 + λ× 0 = 1. ¤

Thus to calculate a determinant, first find any sequence R1, . . . Rk of elementary row op-

erations so that the combined effect of applying these successively to A is an upper triangular

matrix L. Then L = E(Rk) · · ·E(R1)A and so

det(L) = det(E(Rk)) · · · det(E(R1)) det(A),

giving

det(A) = det(E(Rk))
−1 · · ·det(E(R1))

−1 det(L),
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To calculate det(L) is easy, since

det(L) =

∣∣∣∣∣∣∣∣∣∣∣∣

`1 ∗ ∗ ∗ ∗ ∗ ∗
0 `2 ∗ ∗ ∗ ∗ ∗
0 0 `3 ∗ ∗ ∗ ∗
...

...
...

. . .
...

0 0 0 0 · · · 0 `n

∣∣∣∣∣∣∣∣∣∣∣∣

= `1

∣∣∣∣∣∣∣∣∣∣

`2 ∗ ∗ ∗ ∗ ∗
0 `3 ∗ ∗ ∗ ∗
...

...
. . .

...

0 0 0 · · · 0 `n

∣∣∣∣∣∣∣∣∣∣

by definition and repeating this gives det(L) = `1`2 · · · `n.
Using this we can obtain a useful criterion for invertibility of a square matrix.

Proposition 4.5. Let A be an n × n matrix with entries in a field of scalars F . Then

det(A) = 0 if and only if A is singular. Equivalently, det(A) 6= 0 if and only if A is invertible.

Proof. By Proposition 4.3 we know that if A is invertible, then det(A) 6= 0.

On the other hand, if det(A) 6= 0 then suppose that the reduced echelon form of A is A′. If
there is a zero row in A′ then det(A′) = 0. But if A′ = E(Rk) · · ·E(R1)A, then

0 = det(A′) = det(E(Rk)) · · ·det(E(R1)) det(A),

where the scalars det(E(Rk)), . . . ,det(E(R1)), det(A) are all non-zero. Hence this cannot hap-

pen and so A′ = In, showing that A is invertible. ¤

There is an explicit formula, Cramer’s Rule, for finding the inverse of a matrix using de-

terminants. However, it is not much use for computations with large matrices and methods

based on row and column operations are usually much more efficient. In practise, evaluation of

determinants is often simplified by using elementary row operations to create zero’s or otherwise

reduced calculations.

Example 4.6. Evaluate the following determinants:

∣∣∣∣∣∣∣∣∣

4 5 1 2

0 3 2 1

3 0 1 3

2 7 0 3

∣∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣

x y2 1

y 2 x

x+ y 0 x

∣∣∣∣∣∣∣
.
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Solution.

∣∣∣∣∣∣∣∣∣

4 5 1 2

0 3 2 1

3 0 1 3

2 7 0 3

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

4 0 3 2

5 3 0 7

1 2 1 0

2 1 3 3

∣∣∣∣∣∣∣∣∣
[transposing]

=

∣∣∣∣∣∣∣∣∣

4 0 3 2

−1 0 −9 −2

−3 0 −5 −6

2 1 3 3

∣∣∣∣∣∣∣∣∣
[R2 → R2 − 3R4, R3 → R3 − 2R4]

=

∣∣∣∣∣∣∣

4 3 2

−1 −9 −2

−3 −5 −6

∣∣∣∣∣∣∣
[expanding along column 2]

=

∣∣∣∣∣∣∣

4 3 2

1 9 2

3 5 6

∣∣∣∣∣∣∣
[multiplying rows 2 and 3 by (−1)]

=

∣∣∣∣∣∣∣

4 3 2

−3 6 0

0 −22 0

∣∣∣∣∣∣∣
[R2 → R2 −R1, R3 → R3 − 3R1]

= 22

∣∣∣∣∣
4 2

−3 0

∣∣∣∣∣ = 22× 6 = 132, [expanding along row 2]

∣∣∣∣∣∣∣

x y2 1

y 2 x

x+ y 0 x

∣∣∣∣∣∣∣
= (x+ y)

∣∣∣∣∣
y2 1

2 x

∣∣∣∣∣+ x

∣∣∣∣∣
x y2

y 2

∣∣∣∣∣ [expanding along row 3]

= (x+ y)(xy2 − 2) + x(2x− y3)

= x2y2 − 2x+ xy3 − 2y + 2x2 − xy3 = x2y2 − 2x− 2y + 2x2. ¤

Example 4.7. Solve the equation

∣∣∣∣∣∣∣

1 2 −1

x x+ 1 x2

1 1 5

∣∣∣∣∣∣∣
= 0.

Solution. Expanding the determinant gives

∣∣∣∣∣∣∣

1 2 −1

x x+ 1 x2

1 1 5

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

1 2 −1

0 1− x x2 + x

0 −1 6

∣∣∣∣∣∣∣
[R2 → R2 − xR1, R3 → R3 −R1]

=

∣∣∣∣∣
1− x x2 + x

−1 6

∣∣∣∣∣ [expanding along column 1]

= x2 + x+ 6− 6x = x2 − 5x+ 6 = (x− 2)(x− 3).

So the solutions are x = 2, 3. ¤
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Example 4.8. Evaluate the Vandermonde determinant

∣∣∣∣∣∣∣

1 x x2

1 y y2

1 z z2

∣∣∣∣∣∣∣
. Determine when the

matrix



1 x x2

1 y y2

1 z z2


 is singular.

Solution. ∣∣∣∣∣∣∣

1 x x2

1 y y2

1 z z2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

1 x x2

0 y − x y2 − x2

0 z − x z2 − x2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

1 x x2

0 y − x (y − x)(y + x)

0 z − x (z − x)(z + x)

∣∣∣∣∣∣∣

= (y − x)(z − x)

∣∣∣∣∣∣∣

1 x x2

0 1 y + x

0 1 z + x

∣∣∣∣∣∣∣

= (y − x)(z − x)

∣∣∣∣∣
1 y + x

0 z − y

∣∣∣∣∣
= (y − x)(z − x)(z − y).

The matrix is singular precisely when its determinant vanishes, and this happens when at least

one of (y − x), (z − x), (z − y) is zero, i.e., when two of the scalars x, y, z are equal. ¤

Remark 4.9. For n > 1, there is a general formula for an n×n Vandermonde determinant,
∣∣∣∣∣∣∣∣∣∣

1 x1 x21 · · · xn−1
1

1 x2 x22 · · · xn−1
2

...
. . .

...

1 xn x2n · · · xn−1
n

∣∣∣∣∣∣∣∣∣∣

=
∏

16r<s6n

(xs − xr).

The proof is similar to that for the case n = 3. Again we can see when the matrix



1 x1 x21 · · · xn−1
1

1 x2 x22 · · · xn−1
2

...
. . .

...

1 xn x2n · · · xn−1
n




is singular, namely when xr = xs for some pair of distinct indices r, s.

4.2. Determinants of linear transformations

Let V be a finite dimensional vector space over the field of scalars F and suppose that

f : V −→ V is a linear transformation. Write n = dimV .

If we choose a basis S : v1, . . .vn for V , then there is a matrix S [f ]S and we can find its

determinant det(S [f ]S). A second basis T : w1, . . .wn leads to another determinant det(T [f ]T ).

Appealing to Theorem 3.35(b) we find that for a suitable invertible matrix P ,

T [f ]T = P−1
S [f ]SP,

hence by Proposition 4.3,

det(T [f ]T ) = det(P−1
S [f ]SP ) = det(S [f ]S).
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This shows that det(S [f ]S) does not depend on the choice of basis, only on f , hence it is an

invariant of f .

Definition 4.10. Let f : V −→ V is a linear transformation on a finite dimensional vector

space. Then the determinant of f is det f = det(f) = det(S [f ]S), where S is any basis of V .

This value only depends on f and not on the basis S.

Remark 4.11. Suppose that V = Rn. Then there is a geometric interpretation of det f (at

least for n = 2, 3, but it makes sense in the general case if we suitably interpret volume in Rn).

The standard basis vectors e1, . . . , en form the edges of a unit cube based at the origin, with

volume 1. The vectors f(e1), . . . , f(en) form edges of a parallellipiped based at the origin. The

volume of this parallellipiped is | det f | (note that volumes are non-negative!). This is used in

change of variable formulae for multivariable integrals. The value of det f (or more accurately

of | det f |) indicates how much volumes are changed by applying f . The sign of det f indicates

whether or not ‘orientations’ change and this is also encountered in multivariable integration

formulae.

4.3. Characteristic polynomials and the Cayley-Hamilton theorem

For a field F , let A be an n× n matrix with entries in F .

Definition 4.12. The characteristic polynomial of A is the polynomial χA(t) ∈ F [t] (often

denoted charA(t)) defined by

χA(t) = det(tIn −A).

Proposition 4.13. The polynomial χA(t) has degree n and is monic, i.e.,

χA(t) = tn + cn−1t
n−1 + · · ·+ c1t+ c0,

where c0, c1, . . . , cn−1 ∈ F . Furthermore,

cn−1 = − trA, c0 = (−1)n det(A).

Proof. To see the first part, write

det(tIn −A) =

∣∣∣∣∣∣∣∣

t− a11 · · · −a1n
...

. . .
...

−an1 · · · t− ann

∣∣∣∣∣∣∣∣
and then apply property (C) repeatedly.

The formula for cn−1 follows from the fact that the terms contributing to the tn−1 term are

obtained by multiplying n− 1 of the diagonal terms and then multiplying by the constant term

in the remaining one. The result is then

cn−1 = −(a11 + · · ·+ ann) = − tr(A).

For the constant term c0, taking t = 0 and using Proposition 4.4 we obtain

c0 = det(−A) = (−1)n det(A). ¤

Proposition 4.14. Let B be an invertible n× n matrix, then

χBAB−1(t) = χA(t).
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Proof. This follows from the fact that

χBAB−1(t) = det(tIn −BAB−1) = det
(
B(tIn −A)B−1

)
= det(tIn −A)

by Proposition 4.3(ii). ¤

This allows us to make the following definition. See Definition 4.10 for a similar idea. Let V

be a finite dimensional vector space over a field F and let f : V −→ V be a linear transformation.

Definition 4.15. The characteristic polynomial of f is

χf (t) = χ
S [f ]S (t) = det(tIn − S [f ]S),

where S is any basis of V .

We now come to an important result which is useful in connection with the notion of

eigenvalues to be considered in Chapter 5.

Let p(t) = akt
k + ak−1t

k−1 + · · · + a1t + a0 ∈ F [t] be a polynomial (so a0, a1, . . . , ak ∈ F ).

For an n× n matrix A we write

p(A) = akA
k + ak−1A

k−1 + · · ·+ a1A+ a0In,

which is also an n×n matrix. If p(A) = On then we say that A satisfies this polynomial identity.

Similarly, if f : V −→ V is a linear transformation,

p(f) = akf
k + ak−1f

k−1 + · · ·+ a1f + a0 IdV .

Theorem 4.16 (Cayley-Hamilton theorem).

(i) Let A be an n× n matrix. Then

χA(A) = On.

(ii) Let V be a finite dimensional vector space of dimension n and let f : V −→ V be a linear

transformation. Then

χf (f) = 0,

where the right hand side is the constant function taking value 0.

Informally, these results are sometimes summarised by saying that a square matrix A or a

linear transformation f : V −→ V satisfies its own characteristic equation.

Example 4.17. Show that the matrix A =



0 0 2

1 0 0

0 1 3


 satisfies a polynomial identity of

degree 3. Hence show that A is invertible and express A−1 as a polynomial in A.

Solution. The characteristic polynomial of A is

χA(t) =

∣∣∣∣∣∣∣

t 0 −2

−1 t 0

0 −1 t− 3

∣∣∣∣∣∣∣
= t3 − 3t2 − 2.

So det(A) = 2 6= 0 and A is invertible. Also,

A3 − 3A2 − 2I3 = O3

so

A(A2 − 3A) = (A2 − 3A)A = A3 − 3A2 = 2I3,
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giving

A−1 =
1

2
(A2 − 3A). ¤





CHAPTER 5

Eigenvalues and eigenvectors

5.1. Eigenvalues and eigenvectors for matrices

Let F be a field and A ∈ Mn(F ) = Mn×n(F ) be a square matrix. We know that there is

an associated linear transformation fA : Fn −→ Fn given by fA(x) = Ax. We can ask whether

there are any vectors which are fixed by fA, i.e., which satisfy the equation

fA(x) = x.

Of course, 0 is always fixed so we should ask this question with the extra requirement that x

be non-zero. Usually there will be no such vectors, but a slightly more general situation that

might occur is that fA will dilate some non-zero vectors, i.e., fA(x) = λx for some λ ∈ F and

non-zero vector x. This amounts to saying that fA sends all vectors in some line through the

origin into that line. Of course, such a line is a 1-dimensional subspace of Fn.

Example 5.1. Let F = R and consider the 2× 2 matrix A =

[
2 1

0 3

]
.

(i) Show that the linear transformation fA : R2 −→ R2 does not fix any non-zero vectors.

(ii) Show thatfA dilates all vectors on the x-axis by a factor of 2.

(iii) Find all the non-zero vectors which fA dilates by a factor of 3.

Solution.

(i) Suppose that a vector x ∈ R2 satisfies Ax = x, then it also satisfies the homogenous equation

(I2 −A)x = 0, i.e.,

[
−1 −1

0 −2

]
x = 0.

But the only solution of this is x = 0.

(ii) We have [
2 1

0 3

][
x

0

]
=

[
2x

0

]
= 2

[
x

0

]
,

so vectors on the x-axis get dilated under fA by a factor of 2.

(iii) Suppose that Ax = 3x, then

(3I2 −A)x = 0, i.e.,

[
1 −1

0 0

]
x = 0.

The set of all solution vectors of this is the line L = {(t, t) : t ∈ R}. ¤

Definition 5.2. Let F be a field and A ∈ Mn(F ). Then λ ∈ F is an eigenvalue for A if

there is a non-zero vector v ∈ Fn for which Av = λv; such a vector v is called an eigenvalue

associated with λ.

Definition 5.2 crucially depends on the field F as the following example shows.

55



56 5. EIGENVALUES AND EIGENVECTORS

Example 5.3. Let A =

[
0 2

1 0

]
.

(i) Show that A has no eigenvalues in Q.
(ii) Show that A has two eigenvalues in R.

Solution. Notice that

A2 − 2I2 = O2,

so if λ is a real eigenvalue with associated eigenvector v, then

(A2 − 2I2)v = 0,

which gives

(λ2 − 2)v = 0.

Thus we must have λ2 = 2, hence λ = ±√
2. However, neither of ±√

2 is a rational number

although both are real.

Working in R2 we have

A

[√
2

1

]
=

√
2

[√
2

1

]
, A

[
−√

2

1

]
= −

√
2

[
−√

2

1

]
. ¤

A similar problem occurs with the real matrix

[
0 −2

1 0

]
which has the two imaginary eigen-

values ±i
√
2.

Because of this it is preferable to work in an algebraically closed field such as the complex

numbers. So from now on we will work with complex matrices and consider eigenvalues in C
and eigenvectors in Cn. When discussing real matrices we need to take care to check for real

eigenvalues. This is covered by the next result which can be proved easily from the definition.

Lemma 5.4. Let A be an n × n real matrix which we can also view as a complex matrix.

Suppose that λ ∈ R is an eigenvalue for which there is an associated eigenvector in Cn. Then

there is an associated eigenvector in Rn.

Theorem 5.5. Let A be an n × n complex matrix and let λ ∈ C. Then λ is an eigenvalue

of A if and only if λ is a root of the characteristic polynomial χA(t), i.e., χA(λ) = 0.

Proof. From Definition 5.2, λ is an eigenvalue for A if and only if λIn−A is singular, i.e.,

is not invertible. By Proposition 4.5, this is equivalent to requiring that

χA(λ) = det(λIn −A) = 0. ¤

5.2. Some useful facts about roots of polynomials

Recall that every complex (which includes real) polynomial p(t) ∈ C[t] of positive degree n

admits a factorisation into linear polynomials

p(t) = c(t− α1) · · · (t− αn),

where c 6= 0 and the roots αk are unique apart from the order in which they occur. It is often

useful to write

c(t− β1)
r1 · · · (t− βm)rm ,
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where β1, . . . , βm are the distinct complex roots of p(t) and rk > 1. Then rk is the (algebraic)

multiplicity of the root βk. Again, this factorisation is unique apart form the order in which the

distinct roots are listed.

When p(t) is a real polynomial, i.e., p(t) ∈ R[t], the complex roots fall into two types: real

roots and non-real roots which come in complex conjugate pairs. Thus for such a real polynomial

we have

p(t) = c(t− α1) · · · (t− αr)(t− γ1)(t− γ1) · · · (t− γs)(t− γs),

where α1, . . . , αr are the real roots (possibly with repetitions) and γ1, γ1 . . . , γs, γs are the non-

real roots which occur in complex conjugate pairs γk, γj . For a non-real complex number γ,

(t− γ)(t− γ) = t2 − (γ + γ)t+ γγ = t2 − (2Re γ)t+ |γ|2,

where Re γ is the real part of γ and |γ| is the modulus of γ.

Proposition 5.6. Let p(t) = tn + an−1t
n−1 + · · · + a1t + a0 ∈ C[t] be a monic complex

polynomial which factors completely as

p(t) = (t− α1)(t− α2) · · · (t− αn),

where α1, . . . , αn are the complex roots, occurring with multiplicities. The following formulae

apply for the sum and product of these roots:

n∑

i=1

αi = α1 + · · ·+ αn = −an−1,
n∏

i=1

αi = α1 · · ·αn = (−1)na0.

Example 5.7. Let p(t) be a complex polynomial of degree 3. Suppose that

p(t) = t3 − 6t2 + at− 6,

where a ∈ C, and also that 1 is a root of p(t). Find the other roots of p(t).

Solution. Suppose that the other roots are α and β. Then by Proposition 5.6,

−(α+ β + 1) = −6, i.e., β = 5− α;

also,

(−1)× 1× αβ = −6, i.e., αβ = 6.

Hence we find that

(5− α)α = 6, i.e., α2 − 5α+ 6 = 0.

The roots of this are 2, 3, therefore we obtain these as the remaining roots of p(t). ¤

Of course we can use this when working with the characteristic polynomial of an n×nmatrix

A when the roots are the eigenvalues λ1, . . . , λn of A occurring with suitable multiplicities. If

χA(t) = tn + cn−1t
n−1 + · · ·+ c1t+ c0,

then by Proposition 4.13,

λ1 + · · ·+ λn = trA = −cn−1,(5.1)

λ1 · · ·λn = detA = (−1)nc0.(5.2)
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5.3. Eigenspaces and multiplicity of eigenvalues

In this section we will work over the field of complex numbers C.

Definition 5.8. Let A be an n × n complex matrix and let λ ∈ C be an eigenvalue of A.

Then the λ-eigenspace of A is

EigA(λ) = {v ∈ Cn : Av = λv} = {v ∈ Cn : (λIn −A)v = 0},
the set of all eigenvectors associated with λ together with the zero vector 0.

If A is a real matrix and if λ ∈ R is a real eigenvalue, then the real λ-eigenspace of A is

EigRA(λ) = {v ∈ Rn : Av = λv} = EigA(λ) ∩ Rn.

Proposition 5.9. Let A be an n× n complex matrix and let λ ∈ C be an eigenvalue of A.

Then EigA(λ) is a subspace of Cn.

If A is a real matrix and λ is a real eigenvalue, then EigRA(λ) is a subspace of the real vector

space Rn.

Proof. By definition, 0 ∈ EigA(λ). Now notice that if u,v ∈ EigA(λ) and z, w ∈ C, then
A(zu+ wv) = A(zu) +A(wv)

= zAu+ wAv

= zλu+ wλv

= λ(zu+ wv).

Hence EigA(λ) is a subspace of Cn.

The proof in the real case easily follows from the fact that EigRA(λ) = EigA(λ) ∩ Rn. ¤

Definition 5.10. Let A be an n× n complex matrix and let λ ∈ C be an eigenvalue of A.

The geometric multiplicity of λ is dimC EigA(λ).

Note that dimC EigA(λ) > 1. In fact there are some other constraints on geometric multi-

plicity which we will not prove.

Theorem 5.11. Let A be an n× n complex matrix and let λ ∈ C be an eigenvalue of A.

(i) Let the algebraic multiplicity of λ in the characteristic polynomial χA(t) be rλ. Then

geometric multiplicity of λ = dimC EigA(λ) 6 rλ.

(ii) If A is a real matrix, then

dimC EigA(λ) = dimR Eig
R
A(λ).

Example 5.12. For the real matrix A =




2 1 0

−1 0 1

2 0 0


, determine its complex eigenvalues.

For each eigenvalue λ, find the corresponding eigenspace EigA(λ). For each real eigenvalue λ,

find EigRA(λ).

Solution. We have

χA(t) =

∣∣∣∣∣∣∣

t− 2 −1 0

1 t −1

−2 0 t

∣∣∣∣∣∣∣
= (t− 2)

∣∣∣∣∣
t −1

0 t

∣∣∣∣∣+
∣∣∣∣∣

1 −1

−2 t

∣∣∣∣∣

= (t− 2)t2 + (t− 2) = (t− 2)(t2 + 1) = (t− 2)(t− i)(t+ i).
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So the complex roots of χA(t) are 2, i,−i and there is one real root 2. Now we can find the

three eigenspaces.

EigA(2): Working over C, we need to solve

(2I3 −A)z =



2− 2 −1 0

1 2 −1

−2 0 2


 z = 0,

i.e., 


0 −1 0

1 2 −1

−2 0 2


 z = 0.

This is equivalent to the equation


1 0 −1

0 1 0

0 0 0


 z = 0.

in which the matrix is reduced echelon, and the general solution is z = (z, 0, z) (z ∈ C). Hence,
EigA(2) = {(z, 0, z) ∈ C3 : z ∈ C}

and so dimC EigA(2) = 1. Since 2 is real, we can form

EigRA(2) = {(t, 0, t) ∈ R3 : t ∈ R}
which also has dimR Eig

R
A(2) = 1.

EigA(i): Working over C, we need to solve

(iI3 −A)z =



i− 2 −1 0

1 i −1

−2 0 i


 z = 0,

which is equivalent to the reduced echelon equation


1 0 −i/2

0 1 (1 + 2i)/2

0 0 0


 z = 0.

This has general solution

(iz,−(1 + 2i)z, 2z) (z ∈ C),
so

EigA(i) = {(iz,−(1 + 2i)z, 2z) ∈ C3 : z ∈ C}
and dimC EigA(i) = 1.

EigA(−i): Similarly, we have

EigA(−i) = {(−iz,−(1− 2i)z, 2z) ∈ C3 : z ∈ C}
and dimC EigA(−i) = 1. ¤

Notice that in this example, each eigenvalue has geometric multiplicity equal to 1 which

is also its algebraic multiplicity. Before giving a general result on this, here is an important

observation.
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Proposition 5.13. Let A be an n× n complex matrix.

(i) Suppose that λ1, . . . , λk are distinct eigenvalues for A with associated eigenvectors v1, . . . ,vk.

Then v1, . . . ,vk is linearly independent.

(ii) The sum of the eigenspaces EigA(λ1) + · · ·+ EigA(λk) is a direct sum, i.e.,

EigA(λ1) + · · ·+ EigA(λk) = EigA(λ1)⊕ · · · ⊕ EigA(λk).

Proof.

(i) Choose the largest r 6 k for which v1, . . . ,vr is linearly independent. Then if r < k,

v1, . . . ,vr+1 is linearly dependent. Suppose that for some z1, . . . , zr+1 ∈ C, not all zero,

(5.3) z1v1 + · · ·+ zr+1vr+1 = 0.

Multiplying by A we obtain

z1Av1 + · · ·+ zr+1Avr+1 = 0

and hence

(5.4) z1λ1v1 + · · ·+ zr+1λr+1vr+1 = 0.

Now subtracting λr+1× (5.3) from (5.4) we obtain

z1(λ1 − λr+1)v1 + · · ·+ zr(λr − λr+1)vr + 0vr+1 = 0.

But since v1, . . . ,vr is linearly independent, this means that

z1(λ1 − λr+1) = · · · = zr(λr − λr+1) = 0,

and so since the λj are distinct,

z1 = · · · = zr = 0.

hence we must have zr+1vr+1 = 0 which implies that zr+1 = 0 since vr+1 6= 0. So we must have

r = k and v1, . . . ,vk is linearly independent.

(ii) This follows by a similar argument to (i). ¤

Theorem 5.14. Let A be an n × n complex matrix. Suppose that the distinct complex

eigenvalues of A are λ1, . . . , λ` and that for each j = 1, . . . , `,

geometric multiplicity of λj = algebraic multiplicity of λj .

Then Cn is the direct sum of the eigenspaces EigA(λj), i.e.,

Cn = EigA(λ1)⊕ · · · ⊕ EigA(λ`).

In particular, Cn has a basis consisting of eigenvectors of A.

Example 5.15. Let A =



−1 2 2

2 2 2

−3 −6 −6


. Find the eigenvalues of A and show that C3 has

a basis consisting of eigenvectors of A. Show that the real vector space R3 also has a basis

consisting of eigenvectors of A.
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Solution. The characteristic polynomial of A is

χA(t) =

∣∣∣∣∣∣∣

t+ 1 −2 −2

−2 t− 2 −2

3 6 t+ 6

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

t+ 1 −2 0

−2 t− 2 −t

3 6 t

∣∣∣∣∣∣∣

= (t+ 1)

∣∣∣∣∣
t− 2 −t

6 t

∣∣∣∣∣+ 2

∣∣∣∣∣
−2 −t

3 t

∣∣∣∣∣

= t

(
(t+ 1)

∣∣∣∣∣
t− 2 −1

6 1

∣∣∣∣∣+ 2

∣∣∣∣∣
−2 −1

3 1

∣∣∣∣∣

)

= t
(
(t+ 1)(t+ 4) + 2

)
= t(t2 + 5t+ 6) = t(t+ 2)(t+ 3).

Thus the roots of χA(t) are 0,−2,−3 which are all real numbers. Notice that these each have

algebraic multiplicity 1.

EigA(0): We need to find the solutions of

(0I3 −A)



u

v

w


 =




1 −2 −2

−2 −2 −2

3 6 6






u

v

w


 =



0

0

0




which is equivalent to 

1 0 0

0 1 1

0 0 0






u

v

w


 =



0

0

0




and the general solution is (u, v, w) = (0, z,−z) ∈ C3. Thus a basis for EigA(0) is (0, 1,−1)

which is also a basis for the real vector space EigRA(0). So

dimC EigA(0) = dimR Eig
R
A(0) = 1.

EigA(−2): We need to find the solutions of

((−2)I3 −A)



u

v

w


 =



−1 −2 −2

−2 −4 −2

3 6 4






u

v

w


 =



0

0

0




which is equivalent to 

1 2 0

0 0 1

0 0 0






u

v

w


 =



0

0

0




and the general solution is (u, v, w) = (2z,−z, 0) ∈ C3. Thus a basis for EigA(−2) is (2,−1, 0)

which is also a basis for the real vector space EigRA(−2). So

dimC EigA(−2) = dimR Eig
R
A(−2) = 1.

EigA(−3): We need to find the solutions of

((−3)I3 −A)



u

v

w


 =



−2 −2 −2

−2 −5 −2

3 6 3






u

v

w


 =



0

0

0



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which is equivalent to 

1 0 1

0 1 0

0 0 0






u

v

w


 =



0

0

0




and the general solution is (u, v, w) = (z, 0,−z) ∈ C3. Thus a basis for EigA(−2) is (1, 0,−1)

which is also a basis for the real vector space EigRA(−3). So

dimC EigA(−3) = dimR Eig
R
A(−3) = 1.

Then (0, 1,−1), (2,−1, 0), (1, 0,−1) is a basis for the complex vector space C3 and for the

real vector space R3. ¤

Example 5.16. Let B =




0 1 2

−1 0 2

−2 −2 0


. Find the eigenvalues of B and show that C3 has a

basis consisting of eigenvectors of B. For each real eigenvalue λ determine EigRB(λ).

Solution. The characteristic polynomial of B is

χB(t) =

∣∣∣∣∣∣∣

t −1 −2

1 t −2

2 2 t

∣∣∣∣∣∣∣
= t3 + 9t = t(t2 + 9) = t(t− 3i)(t+ 3i),

so the eigenvalues are 0, 3i, −3i. We find that

EigB(0) = {(2z,−2z, z) : z ∈ C},
EigB(3i) = {((1 + 3i)z, (−1 + 3i)z,−4z) : z ∈ C},

EigB(−3i) = {((1− 3i)z, (−1− 3i)z,−4z)) : z ∈ C}.
For the real eigenvalue 0,

EigRB(0) = {(2t,−2t, t) : t ∈ R}.
Note that vectors (2t,−2t, t) with t ∈ R and t 6= 0 are the only real eigenvectors of B.

Then (2,−2, 1), (1 + 3i,−1 + 3i,−4), (1− 3i,−1− 3i,−4) is a basis for the complex vector

space C3. ¤

Example 5.17. Let A =



0 0 −1

0 2 0

1 0 2


. Find the eigenvalues of A and show that C3 has a

basis consisting of eigenvectors of A. For each real eigenvalue λ determine EigRA(λ). Show that

C3 has no basis consisting of eigenvectors for A.

Solution. The characteristic polynomial of A is

χA(t) =

∣∣∣∣∣∣∣

t 0 1

0 t− 2 0

−1 0 t− 2

∣∣∣∣∣∣∣
= (t− 1)2(t− 2),

hence the eigenvalues are 1 with algebraic multiplicity 2, and 2 with algebraic multiplicity 1.

EigA(1): We have to solve the equation



1 0 1

0 −1 0

−1 0 −1






u

v

w


 =



0

0

0


 ,
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which is equivalent to 

1 0 1

0 1 0

0 0 0






u

v

w


 =



0

0

0


 .

This gives

EigA(1) = {(z, 0,−z) : z ∈ C}.
Notice that dimEigA(1) = 1 which is less than the algebraic multiplicity of this eigenvalue.

EigA(2): We have to solve the equation



2 0 1

0 0 0

−1 0 0






u

v

w


 =



0

0

0


 ,

which is equivalent to 

1 0 0

0 0 1

0 0 0






u

v

w


 =



0

0

0


 .

This gives

EigA(2) = {(0, z, 0) : z ∈ C}.
Thus we obtain

dim(EigA(1) + EigA(2)) = dimEigA(1) + dimEigA(2)− dimEigA(1) ∩ EigA(2)

= 1 + 1− 0 = 2.

So the eigenvectors cannot span C3.

Similarly,

EigRA(1) = {(s, 0,−s) : s ∈ R}, EigRA(2) = {(0, t, 0) : t ∈ R},

and

dimR(Eig
R
A(1) + EigRA(2)) = dimR Eig

R
A(1) + dimR Eig

R
A(2)− dimR Eig

R
A(1) ∩ EigRA(2)

= 1 + 1− 0 = 2. ¤

This shows that eigenvalues cannot span C3.

These examples show that when the algebraic multiplicity of an eigenvalue is greater than 1,

its geometric multiplicity need not be the same as its algebraic multiplicity.

5.4. Diagonalisability of square matrices

Now we will consider the implications of the last section for diagonalisability of square

matrices.

Definition 5.18. Let A,B ∈ Mn(F ) be n×n matrices with entries in a field F . Then A is

similar to B if there is an invertible n× n matrix P ∈ Mn(F ) for which

B = P−1AP.
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Remark 5.19. Notice that if B = P−1AP then

A = PBP−1 = (P−1)−1BP−1,

so B is also similar to A. If we take P = In = I−1
n , then

A = I−1
n AIn,

so A is similar to itself. Finally, if A is similar to B (say B = P−1AP ) and B is similar to C

(say C = Q−1BQ), then

C = Q−1(P−1AP )Q = (Q−1P−1)A(PQ) = (PQ)−1A(PQ),

hence A is similar to C. These three observations show that the notion of similarity defines an

equivalence relation on Mn(F ).

Definition 5.20. Let λ1, . . . , λn ∈ F be scalars. The diagonal matrix diag(λ1, . . . , λn) is

the n× n matrix

diag(λ1, . . . , λn) =



λ1 · · · 0
...

. . .
...

0 · · · λn




with the scalars λ1, . . . , λn down the main diagonal and 0 everywhere else. An n × n matrix

A ∈ Mn(F ) is diagonalisable (over F ) if it is similar to a diagonal matrix, i.e., if there is an

invertible matrix P for which P−1AP is a diagonal matrix.

Now we can ask the question: When is a square matrix similar to a diagonal matrix? This

is answered by our next result.

Theorem 5.21. A matrix A ∈ Mn(F ) is diagonalisable over F if and only Fn has a basis

consisting of eigenvectors of A.

Proof. If Fn has a basis of eigenvectors of A, say v1, . . . ,vn with associated eigenvalues

λ1, . . . , λn, let P be the invertible matrix with these vectors as its columns. We have

AP =
[
Av1 · · · Avn

]

=
[
λ1v1 · · · λnvn

]

=
[
v1 · · · vn

]
diag(λ1, . . . , λn)

= P diag(λ1, . . . , λn),

from which we obtain

P−1AP = diag(λ1, . . . , λn),

hence A is similar to the diagonal matrix diag(λ1, . . . , λn). On the other hand, if A is similar

to a diagonal matrix, say

P−1AP = diag(λ1, . . . , λn),

then

AP = P diag(λ1, . . . , λn),

and the columns of P are eigenvectors associated with the eigenvalues λ1, . . . , λn and they also

form a basis of Fn. ¤
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The process of finding a diagonal matrix similar to a given matrix is called diagonalisation.

It usually works best over C, but sometimes a real matrix can be diagonalised over R if all its

eigenvalues are real.

Example 5.22. Diagonalise the real matrix

A =



2 −2 3

1 1 1

1 3 −1


 .

Solution. First we find the complex eigenvalues of A. The characteristic polynomial is

χA(t) =

∣∣∣∣∣∣∣

t− 2 2 −3

−1 t− 1 −1

−1 −3 t+ 1

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

t− 2 2 −3

0 t+ 2 −t− 2

−1 −3 t+ 1

∣∣∣∣∣∣∣

= (t+ 2)

∣∣∣∣∣∣∣

t− 2 2 −3

0 1 −1

−1 −3 t+ 1

∣∣∣∣∣∣∣

= (t+ 2)

(
(t− 2)

∣∣∣∣∣
1 −1

−3 t+ 1

∣∣∣∣∣−
∣∣∣∣∣

2 −3

1 −1

∣∣∣∣∣

)

= (t+ 2) ((t− 2)(t+ 1− 3)− (−2 + 3))

= (t+ 2)
(
(t− 2)2 − 1

)
= (t+ 2)(t2 − 4t+ 4− 1) = (t+ 2)(t2 − 4t+ 3)

= (t+ 2)(t− 3)(t− 1).

Hence the roots of χA(t) are the real numbers −2, 1, 3 and these are the eigenvalues of A.

Now solving the equation ((−2)I3 − A)x = 0 we find that the general real solution is

x = (11t, t,−14t) with t ∈ R. So an eigenvector for the eigenvalue −2 is (11, 1,−14).

Solving (I3 − A)x = 0 we find that the general real solution is x = (t,−t,−t) with t ∈ R.
So an eigenvector for the eigenvalue 1 is (1,−1,−1).

Solving (3I3 − A)x = 0 we find that the general real solution is x = (t, t, t) with t ∈ R. So

an eigenvector for the eigenvalue 3 is (1, 1, 1).

The vectors (11, 1,−14), (1,−1,−1), (1, 1, 1) form a basis for the real vector space R3 and

the matrix P =




11 1 1

1 −1 1

−14 −1 1


 satisfies

A




11 1 1

1 −1 1

−14 −1 1


 =



−22 1 3

−2 −1 3

28 −1 3


 =




11 1 1

1 −1 1

−14 −1 1


diag(−2, 1, 3),

hence

AP = P diag(−2, 1, 3).

Therefore diag(−2, 1, 3) = P−1AP , showing that A is diagonalisable. ¤





APPENDIX A

Complex solutions of linear ordinary differential equations

It often makes sense to look for complex valued solutions of differential equations of the

form

(A.1)
dnf

dxn
+ an−1

dn−1f

dxn−1
+ · · ·+ a1

df

dx
+ a0f = 0,

where the ar are real or complex numbers which do not depend on x. The solutions are functions

defined on R and taking values in C. The number n is called the degree of the differential

equation.

When n = 1, for any complex number a, the differential equation

df

dx
+ af = 0

has as its solutions all the functions of the form te−ax, for t ∈ C. Here we recall that for a

complex number z = x+ yi with x, y ∈ R,
ez = ex+yi = exeyi = ex(cos y + i sin y) = ex cos y + iex sin y.

When n = 2, for any complex numbers a, b, we consider the differential equation

(A.2)
d2f

dx2
+ a

df

dx
+ bf = 0,

where we assume that the polynomial z2 + az + b has the complex roots α, β, which might be

equal.

• If α 6= β, then (A.2) has as its solutions all the functions of the form seαx + tseβx, for

s, t ∈ C.
• If α = β, then (A.2) has as its solutions all the functions of the form seαx + txeαx, for

s, t ∈ C.
When a, b are real, then either both roots are real or there are two complex conjugate roots

α, α; suppose that α = u+ vi where u, v ∈ R, hence the complex conjugate of α is α = u− vi.

In this case we can write the solutions in the form

• peux cos vx+ qeux sin vx for p, q ∈ C if v 6= 0,

• peux + qxeux for p, q ∈ C if v = 0.

In either case, to get real solutions we have to take p, q ∈ R.

67





Bibliography

[BLA] T. S. Blyth & E. F. Robertson, Basic Linear Algebra, Springer-Verlag (1998), ISBN 3540761225.

[FLA] T. S. Blyth & E. F. Robertson, Further Linear Algebra, Springer-Verlag (2002), ISBN 1852334258.

[LADR] S. Axler, Linear Algebra Done Right, 2nd edition, corrected 7th printing, Springer-Verlag (2004), ISBN

0387982582.

[Schaum] S. Lipschutz & M. Lipson, Schaum’s Outline of Linear algebra, McGraw-Hill (2000), ISBN 0071362002.

[Strang] G. Strang, Linear Algebra and Its Applications, 4th edition, BrooksCole, ISBN 0534422004.

69


